Cargando…

Cloud-based solution to identify statistically significant MS peaks differentiating sample categories

BACKGROUND: Mass spectrometry (MS) has evolved to become the primary high throughput tool for proteomics based biomarker discovery. Until now, multiple challenges in protein MS data analysis remain: large-scale and complex data set management; MS peak identification, indexing; and high dimensional p...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Jun, Ling, Jeffrey, Jiang, Helen, Wen, Qiaojun, Whitin, John C, Tian, Lu, Cohen, Harvey J, Ling, Xuefeng B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621609/
https://www.ncbi.nlm.nih.gov/pubmed/23522030
http://dx.doi.org/10.1186/1756-0500-6-109
Descripción
Sumario:BACKGROUND: Mass spectrometry (MS) has evolved to become the primary high throughput tool for proteomics based biomarker discovery. Until now, multiple challenges in protein MS data analysis remain: large-scale and complex data set management; MS peak identification, indexing; and high dimensional peak differential analysis with the concurrent statistical tests based false discovery rate (FDR). “Turnkey” solutions are needed for biomarker investigations to rapidly process MS data sets to identify statistically significant peaks for subsequent validation. FINDINGS: Here we present an efficient and effective solution, which provides experimental biologists easy access to “cloud” computing capabilities to analyze MS data. The web portal can be accessed at http://transmed.stanford.edu/ssa/. CONCLUSIONS: Presented web application supplies large scale MS data online uploading and analysis with a simple user interface. This bioinformatic tool will facilitate the discovery of the potential protein biomarkers using MS.