Cargando…
Importance of the ammonia assimilation by Penicillium purpurogenum in amino derivative Monascus pigment, PP-V, production
A fungal strain, Penicillium purpurogenum IAM 15392, produced the azaphilone Monascus pigment homolog when cultured in a medium composed of soluble starch, ammonium nitrate, yeast extract, and citrate buffer, pH 5.0. One of the typical features of violet pigment PP-V [(10Z)-12- carboxyl-monascorubra...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621813/ https://www.ncbi.nlm.nih.gov/pubmed/23537394 http://dx.doi.org/10.1186/2191-0855-3-19 |
Sumario: | A fungal strain, Penicillium purpurogenum IAM 15392, produced the azaphilone Monascus pigment homolog when cultured in a medium composed of soluble starch, ammonium nitrate, yeast extract, and citrate buffer, pH 5.0. One of the typical features of violet pigment PP-V [(10Z)-12- carboxyl-monascorubramine] is that pyranoid oxygen is replaced with nitrogen. In this study, we found that glutamine synthetase (glnB) and glutamate dehydrogenase (gdh1) genes were expressed in the culture conditions conducive to PP-V production. Gln and Glu both support PP-V biosynthesis, but PP-V biosynthesis was much more efficient with Gln. We determined that synthesis of Gln by glutamine synthetase from ammonium is important for PP-V production. |
---|