Cargando…

MrBayes tgMC(3): A Tight GPU Implementation of MrBayes

MrBayes is model-based phylogenetic inference tool using Bayesian statistics. However, model-based assessment of phylogenetic trees adds to the computational burden of tree-searching, and so poses significant computational challenges. Graphics Processing Units (GPUs) have been proposed as high perfo...

Descripción completa

Detalles Bibliográficos
Autores principales: Ling, Cheng, Hamada, Tsuyoshi, Bai, Jianing, Li, Xianbin, Chesters, Douglas, Zheng, Weimin, Shi, Weifeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621901/
https://www.ncbi.nlm.nih.gov/pubmed/23593277
http://dx.doi.org/10.1371/journal.pone.0060667
_version_ 1782265783990091776
author Ling, Cheng
Hamada, Tsuyoshi
Bai, Jianing
Li, Xianbin
Chesters, Douglas
Zheng, Weimin
Shi, Weifeng
author_facet Ling, Cheng
Hamada, Tsuyoshi
Bai, Jianing
Li, Xianbin
Chesters, Douglas
Zheng, Weimin
Shi, Weifeng
author_sort Ling, Cheng
collection PubMed
description MrBayes is model-based phylogenetic inference tool using Bayesian statistics. However, model-based assessment of phylogenetic trees adds to the computational burden of tree-searching, and so poses significant computational challenges. Graphics Processing Units (GPUs) have been proposed as high performance, low cost acceleration platforms and several parallelized versions of the Metropolis Coupled Markov Chain Mote Carlo (MC(3)) algorithm in MrBayes have been presented that can run on GPUs. However, some bottlenecks decrease the efficiency of these implementations. To address these bottlenecks, we propose a tight GPU MC(3) (tgMC(3)) algorithm. tgMC(3) implements a different architecture from the one-to-one acceleration architecture employed in previously proposed methods. It merges multiply discrete GPU kernels according to the data dependency and hence decreases the number of kernels launched and the complexity of data transfer. We implemented tgMC(3) and made performance comparisons with an earlier proposed algorithm, nMC(3), and also with MrBayes MC(3) under serial and multiply concurrent CPU processes. All of the methods were benchmarked on the same computing node from DEGIMA. Experiments indicate that the tgMC(3) method outstrips nMC(3) (v1.0) with speedup factors from 2.1 to 2.7×. In addition, tgMC(3) outperforms the serial MrBayes MC(3) by a factor of 6 to 30× when using a single GTX480 card, whereas a speedup factor of around 51× can be achieved by using two GTX 480 cards on relatively long sequences. Moreover, tgMC(3) was compared with MrBayes accelerated by BEAGLE, and achieved speedup factors from 3.7 to 5.7×. The reported performance improvement of tgMC(3) is significant and appears to scale well with increasing dataset sizes. In addition, the strategy proposed in tgMC(3) could benefit the acceleration of other Bayesian-based phylogenetic analysis methods using GPUs.
format Online
Article
Text
id pubmed-3621901
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-36219012013-04-16 MrBayes tgMC(3): A Tight GPU Implementation of MrBayes Ling, Cheng Hamada, Tsuyoshi Bai, Jianing Li, Xianbin Chesters, Douglas Zheng, Weimin Shi, Weifeng PLoS One Research Article MrBayes is model-based phylogenetic inference tool using Bayesian statistics. However, model-based assessment of phylogenetic trees adds to the computational burden of tree-searching, and so poses significant computational challenges. Graphics Processing Units (GPUs) have been proposed as high performance, low cost acceleration platforms and several parallelized versions of the Metropolis Coupled Markov Chain Mote Carlo (MC(3)) algorithm in MrBayes have been presented that can run on GPUs. However, some bottlenecks decrease the efficiency of these implementations. To address these bottlenecks, we propose a tight GPU MC(3) (tgMC(3)) algorithm. tgMC(3) implements a different architecture from the one-to-one acceleration architecture employed in previously proposed methods. It merges multiply discrete GPU kernels according to the data dependency and hence decreases the number of kernels launched and the complexity of data transfer. We implemented tgMC(3) and made performance comparisons with an earlier proposed algorithm, nMC(3), and also with MrBayes MC(3) under serial and multiply concurrent CPU processes. All of the methods were benchmarked on the same computing node from DEGIMA. Experiments indicate that the tgMC(3) method outstrips nMC(3) (v1.0) with speedup factors from 2.1 to 2.7×. In addition, tgMC(3) outperforms the serial MrBayes MC(3) by a factor of 6 to 30× when using a single GTX480 card, whereas a speedup factor of around 51× can be achieved by using two GTX 480 cards on relatively long sequences. Moreover, tgMC(3) was compared with MrBayes accelerated by BEAGLE, and achieved speedup factors from 3.7 to 5.7×. The reported performance improvement of tgMC(3) is significant and appears to scale well with increasing dataset sizes. In addition, the strategy proposed in tgMC(3) could benefit the acceleration of other Bayesian-based phylogenetic analysis methods using GPUs. Public Library of Science 2013-04-09 /pmc/articles/PMC3621901/ /pubmed/23593277 http://dx.doi.org/10.1371/journal.pone.0060667 Text en © 2013 Ling et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Ling, Cheng
Hamada, Tsuyoshi
Bai, Jianing
Li, Xianbin
Chesters, Douglas
Zheng, Weimin
Shi, Weifeng
MrBayes tgMC(3): A Tight GPU Implementation of MrBayes
title MrBayes tgMC(3): A Tight GPU Implementation of MrBayes
title_full MrBayes tgMC(3): A Tight GPU Implementation of MrBayes
title_fullStr MrBayes tgMC(3): A Tight GPU Implementation of MrBayes
title_full_unstemmed MrBayes tgMC(3): A Tight GPU Implementation of MrBayes
title_short MrBayes tgMC(3): A Tight GPU Implementation of MrBayes
title_sort mrbayes tgmc(3): a tight gpu implementation of mrbayes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621901/
https://www.ncbi.nlm.nih.gov/pubmed/23593277
http://dx.doi.org/10.1371/journal.pone.0060667
work_keys_str_mv AT lingcheng mrbayestgmc3atightgpuimplementationofmrbayes
AT hamadatsuyoshi mrbayestgmc3atightgpuimplementationofmrbayes
AT baijianing mrbayestgmc3atightgpuimplementationofmrbayes
AT lixianbin mrbayestgmc3atightgpuimplementationofmrbayes
AT chestersdouglas mrbayestgmc3atightgpuimplementationofmrbayes
AT zhengweimin mrbayestgmc3atightgpuimplementationofmrbayes
AT shiweifeng mrbayestgmc3atightgpuimplementationofmrbayes