Cargando…
Time Series Expression Analyses Using RNA-seq: A Statistical Approach
RNA-seq is becoming the de facto standard approach for transcriptome analysis with ever-reducing cost. It has considerable advantages over conventional technologies (microarrays) because it allows for direct identification and quantification of transcripts. Many time series RNA-seq datasets have bee...
Autores principales: | Oh, Sunghee, Song, Seongho, Grabowski, Gregory, Zhao, Hongyu, Noonan, James P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622290/ https://www.ncbi.nlm.nih.gov/pubmed/23586021 http://dx.doi.org/10.1155/2013/203681 |
Ejemplares similares
-
Temporal dynamics in meta longitudinal RNA-Seq data
por: Oh, Sunghee, et al.
Publicado: (2019) -
The analytical landscape of static and temporal dynamics in transcriptome data
por: Oh, Sunghee, et al.
Publicado: (2014) -
DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data
por: Wang, Zhuo, et al.
Publicado: (2017) -
Approximate inference of gene regulatory network models from RNA-Seq time series data
por: Thorne, Thomas
Publicado: (2018) -
Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model
por: Sun, Xiaoxiao, et al.
Publicado: (2016)