Cargando…

Identifying Communities and Key Vertices by Reconstructing Networks from Samples

Sampling techniques such as Respondent-Driven Sampling (RDS) are widely used in epidemiology to sample “hidden” populations, such that properties of the network can be deduced from the sample. We consider how similar techniques can be designed that allow the discovery of the structure, especially th...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Bowen, Gregory, Steve
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622610/
https://www.ncbi.nlm.nih.gov/pubmed/23593375
http://dx.doi.org/10.1371/journal.pone.0061006
Descripción
Sumario:Sampling techniques such as Respondent-Driven Sampling (RDS) are widely used in epidemiology to sample “hidden” populations, such that properties of the network can be deduced from the sample. We consider how similar techniques can be designed that allow the discovery of the structure, especially the community structure, of networks. Our method involves collecting samples of a network by random walks and reconstructing the network by probabilistically coalescing vertices, using vertex attributes to determine the probabilities. Even though our method can only approximately reconstruct a part of the original network, it can recover its community structure relatively well. Moreover, it can find the key vertices which, when immunized, can effectively reduce the spread of an infection through the original network.