Cargando…
Facile one-step coating approach to magnetic submicron particles with poly(ethylene glycol) coats and abundant accessible carboxyl groups
PURPOSE: Magnetic submicron particles (MSPs) are pivotal biomaterials for magnetic separations in bioanalyses, but their preparation remains a technical challenge. In this report, a facile one-step coating approach to MSPs suitable for magnetic separations was investigated. METHODS: Polyethylene gly...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622656/ https://www.ncbi.nlm.nih.gov/pubmed/23589687 http://dx.doi.org/10.2147/IJN.S41411 |
_version_ | 1782265861908725760 |
---|---|
author | Long, Gaobo Yang, Xiao-lan Zhang, Yi Pu, Jun Liu, Lin Liu, Hong-bo Li, Yuan-li Liao, Fei |
author_facet | Long, Gaobo Yang, Xiao-lan Zhang, Yi Pu, Jun Liu, Lin Liu, Hong-bo Li, Yuan-li Liao, Fei |
author_sort | Long, Gaobo |
collection | PubMed |
description | PURPOSE: Magnetic submicron particles (MSPs) are pivotal biomaterials for magnetic separations in bioanalyses, but their preparation remains a technical challenge. In this report, a facile one-step coating approach to MSPs suitable for magnetic separations was investigated. METHODS: Polyethylene glycol) (PEG) was derived into PEG-bis-(maleic monoester) and maleic monoester-PEG-succinic monoester as the monomers. Magnetofluids were prepared via chemical co-precipitation and dispersion with the monomers. MSPs were prepared via one-step coating of magnetofluids in a water-in-oil microemulsion system of aerosol-OT and heptane by radical co-polymerization of such monomers. RESULTS: The resulting MSPs contained abundant carboxyl groups, exhibited negligible nonspecific adsorption of common substances and excellent suspension stability, appeared as irregular particles by electronic microscopy, and had submicron sizes of broad distribution by laser scattering. Saturation magnetizations and average particle sizes were affected mainly by the quantities of monomers used for coating magnetofluids, and steric hindrance around carboxyl groups was alleviated by the use of longer monomers of one polymerizable bond for coating. After optimizations, MSPs bearing saturation magnetizations over 46 emu/g, average sizes of 0.32 μm, and titrated carboxyl groups of about 0.21 mmol/g were obtained. After the activation of carboxyl groups on MSPs into N-hydroxysuccinimide ester, biotin was immobilized on MSPs and the resulting biotin-functionalized MSPs isolated the conjugate of streptavidin and alkaline phosphatase at about 2.1 mg/g MSPs; streptavidin was immobilized at about 10 mg/g MSPs and retained 81% ± 18% (n = 5) of the specific activity of the free form. CONCLUSION: The facile approach effectively prepares MSPs for magnetic separations. |
format | Online Article Text |
id | pubmed-3622656 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-36226562013-04-15 Facile one-step coating approach to magnetic submicron particles with poly(ethylene glycol) coats and abundant accessible carboxyl groups Long, Gaobo Yang, Xiao-lan Zhang, Yi Pu, Jun Liu, Lin Liu, Hong-bo Li, Yuan-li Liao, Fei Int J Nanomedicine Original Research PURPOSE: Magnetic submicron particles (MSPs) are pivotal biomaterials for magnetic separations in bioanalyses, but their preparation remains a technical challenge. In this report, a facile one-step coating approach to MSPs suitable for magnetic separations was investigated. METHODS: Polyethylene glycol) (PEG) was derived into PEG-bis-(maleic monoester) and maleic monoester-PEG-succinic monoester as the monomers. Magnetofluids were prepared via chemical co-precipitation and dispersion with the monomers. MSPs were prepared via one-step coating of magnetofluids in a water-in-oil microemulsion system of aerosol-OT and heptane by radical co-polymerization of such monomers. RESULTS: The resulting MSPs contained abundant carboxyl groups, exhibited negligible nonspecific adsorption of common substances and excellent suspension stability, appeared as irregular particles by electronic microscopy, and had submicron sizes of broad distribution by laser scattering. Saturation magnetizations and average particle sizes were affected mainly by the quantities of monomers used for coating magnetofluids, and steric hindrance around carboxyl groups was alleviated by the use of longer monomers of one polymerizable bond for coating. After optimizations, MSPs bearing saturation magnetizations over 46 emu/g, average sizes of 0.32 μm, and titrated carboxyl groups of about 0.21 mmol/g were obtained. After the activation of carboxyl groups on MSPs into N-hydroxysuccinimide ester, biotin was immobilized on MSPs and the resulting biotin-functionalized MSPs isolated the conjugate of streptavidin and alkaline phosphatase at about 2.1 mg/g MSPs; streptavidin was immobilized at about 10 mg/g MSPs and retained 81% ± 18% (n = 5) of the specific activity of the free form. CONCLUSION: The facile approach effectively prepares MSPs for magnetic separations. Dove Medical Press 2013 2013-02-25 /pmc/articles/PMC3622656/ /pubmed/23589687 http://dx.doi.org/10.2147/IJN.S41411 Text en © 2013 Long et al, publisher and licensee Dove Medical Press Ltd This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. |
spellingShingle | Original Research Long, Gaobo Yang, Xiao-lan Zhang, Yi Pu, Jun Liu, Lin Liu, Hong-bo Li, Yuan-li Liao, Fei Facile one-step coating approach to magnetic submicron particles with poly(ethylene glycol) coats and abundant accessible carboxyl groups |
title | Facile one-step coating approach to magnetic submicron particles with poly(ethylene glycol) coats and abundant accessible carboxyl groups |
title_full | Facile one-step coating approach to magnetic submicron particles with poly(ethylene glycol) coats and abundant accessible carboxyl groups |
title_fullStr | Facile one-step coating approach to magnetic submicron particles with poly(ethylene glycol) coats and abundant accessible carboxyl groups |
title_full_unstemmed | Facile one-step coating approach to magnetic submicron particles with poly(ethylene glycol) coats and abundant accessible carboxyl groups |
title_short | Facile one-step coating approach to magnetic submicron particles with poly(ethylene glycol) coats and abundant accessible carboxyl groups |
title_sort | facile one-step coating approach to magnetic submicron particles with poly(ethylene glycol) coats and abundant accessible carboxyl groups |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622656/ https://www.ncbi.nlm.nih.gov/pubmed/23589687 http://dx.doi.org/10.2147/IJN.S41411 |
work_keys_str_mv | AT longgaobo facileonestepcoatingapproachtomagneticsubmicronparticleswithpolyethyleneglycolcoatsandabundantaccessiblecarboxylgroups AT yangxiaolan facileonestepcoatingapproachtomagneticsubmicronparticleswithpolyethyleneglycolcoatsandabundantaccessiblecarboxylgroups AT zhangyi facileonestepcoatingapproachtomagneticsubmicronparticleswithpolyethyleneglycolcoatsandabundantaccessiblecarboxylgroups AT pujun facileonestepcoatingapproachtomagneticsubmicronparticleswithpolyethyleneglycolcoatsandabundantaccessiblecarboxylgroups AT liulin facileonestepcoatingapproachtomagneticsubmicronparticleswithpolyethyleneglycolcoatsandabundantaccessiblecarboxylgroups AT liuhongbo facileonestepcoatingapproachtomagneticsubmicronparticleswithpolyethyleneglycolcoatsandabundantaccessiblecarboxylgroups AT liyuanli facileonestepcoatingapproachtomagneticsubmicronparticleswithpolyethyleneglycolcoatsandabundantaccessiblecarboxylgroups AT liaofei facileonestepcoatingapproachtomagneticsubmicronparticleswithpolyethyleneglycolcoatsandabundantaccessiblecarboxylgroups |