Cargando…

Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications

The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimen...

Descripción completa

Detalles Bibliográficos
Autores principales: Martinez-Boubeta, Carlos, Simeonidis, Konstantinos, Makridis, Antonios, Angelakeris, Makis, Iglesias, Oscar, Guardia, Pablo, Cabot, Andreu, Yedra, Lluis, Estradé, Sonia, Peiró, Francesca, Saghi, Zineb, Midgley, Paul A., Conde-Leborán, Iván, Serantes, David, Baldomir, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622918/
https://www.ncbi.nlm.nih.gov/pubmed/23576006
http://dx.doi.org/10.1038/srep01652
_version_ 1782265885615980544
author Martinez-Boubeta, Carlos
Simeonidis, Konstantinos
Makridis, Antonios
Angelakeris, Makis
Iglesias, Oscar
Guardia, Pablo
Cabot, Andreu
Yedra, Lluis
Estradé, Sonia
Peiró, Francesca
Saghi, Zineb
Midgley, Paul A.
Conde-Leborán, Iván
Serantes, David
Baldomir, Daniel
author_facet Martinez-Boubeta, Carlos
Simeonidis, Konstantinos
Makridis, Antonios
Angelakeris, Makis
Iglesias, Oscar
Guardia, Pablo
Cabot, Andreu
Yedra, Lluis
Estradé, Sonia
Peiró, Francesca
Saghi, Zineb
Midgley, Paul A.
Conde-Leborán, Iván
Serantes, David
Baldomir, Daniel
author_sort Martinez-Boubeta, Carlos
collection PubMed
description The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies.
format Online
Article
Text
id pubmed-3622918
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-36229182013-04-11 Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications Martinez-Boubeta, Carlos Simeonidis, Konstantinos Makridis, Antonios Angelakeris, Makis Iglesias, Oscar Guardia, Pablo Cabot, Andreu Yedra, Lluis Estradé, Sonia Peiró, Francesca Saghi, Zineb Midgley, Paul A. Conde-Leborán, Iván Serantes, David Baldomir, Daniel Sci Rep Article The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies. Nature Publishing Group 2013-04-11 /pmc/articles/PMC3622918/ /pubmed/23576006 http://dx.doi.org/10.1038/srep01652 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/
spellingShingle Article
Martinez-Boubeta, Carlos
Simeonidis, Konstantinos
Makridis, Antonios
Angelakeris, Makis
Iglesias, Oscar
Guardia, Pablo
Cabot, Andreu
Yedra, Lluis
Estradé, Sonia
Peiró, Francesca
Saghi, Zineb
Midgley, Paul A.
Conde-Leborán, Iván
Serantes, David
Baldomir, Daniel
Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications
title Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications
title_full Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications
title_fullStr Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications
title_full_unstemmed Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications
title_short Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications
title_sort learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622918/
https://www.ncbi.nlm.nih.gov/pubmed/23576006
http://dx.doi.org/10.1038/srep01652
work_keys_str_mv AT martinezboubetacarlos learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications
AT simeonidiskonstantinos learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications
AT makridisantonios learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications
AT angelakerismakis learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications
AT iglesiasoscar learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications
AT guardiapablo learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications
AT cabotandreu learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications
AT yedralluis learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications
AT estradesonia learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications
AT peirofrancesca learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications
AT saghizineb learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications
AT midgleypaula learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications
AT condeleboranivan learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications
AT serantesdavid learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications
AT baldomirdaniel learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications