Cargando…
Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications
The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimen...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622918/ https://www.ncbi.nlm.nih.gov/pubmed/23576006 http://dx.doi.org/10.1038/srep01652 |
_version_ | 1782265885615980544 |
---|---|
author | Martinez-Boubeta, Carlos Simeonidis, Konstantinos Makridis, Antonios Angelakeris, Makis Iglesias, Oscar Guardia, Pablo Cabot, Andreu Yedra, Lluis Estradé, Sonia Peiró, Francesca Saghi, Zineb Midgley, Paul A. Conde-Leborán, Iván Serantes, David Baldomir, Daniel |
author_facet | Martinez-Boubeta, Carlos Simeonidis, Konstantinos Makridis, Antonios Angelakeris, Makis Iglesias, Oscar Guardia, Pablo Cabot, Andreu Yedra, Lluis Estradé, Sonia Peiró, Francesca Saghi, Zineb Midgley, Paul A. Conde-Leborán, Iván Serantes, David Baldomir, Daniel |
author_sort | Martinez-Boubeta, Carlos |
collection | PubMed |
description | The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies. |
format | Online Article Text |
id | pubmed-3622918 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-36229182013-04-11 Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications Martinez-Boubeta, Carlos Simeonidis, Konstantinos Makridis, Antonios Angelakeris, Makis Iglesias, Oscar Guardia, Pablo Cabot, Andreu Yedra, Lluis Estradé, Sonia Peiró, Francesca Saghi, Zineb Midgley, Paul A. Conde-Leborán, Iván Serantes, David Baldomir, Daniel Sci Rep Article The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies. Nature Publishing Group 2013-04-11 /pmc/articles/PMC3622918/ /pubmed/23576006 http://dx.doi.org/10.1038/srep01652 Text en Copyright © 2013, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Article Martinez-Boubeta, Carlos Simeonidis, Konstantinos Makridis, Antonios Angelakeris, Makis Iglesias, Oscar Guardia, Pablo Cabot, Andreu Yedra, Lluis Estradé, Sonia Peiró, Francesca Saghi, Zineb Midgley, Paul A. Conde-Leborán, Iván Serantes, David Baldomir, Daniel Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications |
title | Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications |
title_full | Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications |
title_fullStr | Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications |
title_full_unstemmed | Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications |
title_short | Learning from Nature to Improve the Heat Generation of Iron-Oxide Nanoparticles for Magnetic Hyperthermia Applications |
title_sort | learning from nature to improve the heat generation of iron-oxide nanoparticles for magnetic hyperthermia applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3622918/ https://www.ncbi.nlm.nih.gov/pubmed/23576006 http://dx.doi.org/10.1038/srep01652 |
work_keys_str_mv | AT martinezboubetacarlos learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications AT simeonidiskonstantinos learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications AT makridisantonios learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications AT angelakerismakis learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications AT iglesiasoscar learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications AT guardiapablo learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications AT cabotandreu learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications AT yedralluis learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications AT estradesonia learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications AT peirofrancesca learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications AT saghizineb learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications AT midgleypaula learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications AT condeleboranivan learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications AT serantesdavid learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications AT baldomirdaniel learningfromnaturetoimprovetheheatgenerationofironoxidenanoparticlesformagnetichyperthermiaapplications |