Cargando…
The present and future of rabies vaccine in animals
An effective strategy for preventing rabies consists of controlling rabies in the host reservoir with vaccination. Rabies vaccine has proven to be the most effective weapon for coping with this fatal viral zoonotic disease of warm-blooded animals, including human. Natural rabies infection of an indi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Korean Vaccine Society
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3623496/ https://www.ncbi.nlm.nih.gov/pubmed/23596586 http://dx.doi.org/10.7774/cevr.2013.2.1.19 |
Sumario: | An effective strategy for preventing rabies consists of controlling rabies in the host reservoir with vaccination. Rabies vaccine has proven to be the most effective weapon for coping with this fatal viral zoonotic disease of warm-blooded animals, including human. Natural rabies infection of an individual is always associated with exposure to rabid animals, and the duration of clinical signs can vary from days to months. The incubation period for the disease depends on the site of the bite, severity of injury, and the amount of infecting virus at the time of exposure. The mortality of untreated cases in humans is 100%. Over the last 100 years, various rabies vaccines have been developed and used to prevent or control rabies in animals, such as modified live vaccine, inactivated rabies vaccine, and oral modified live vaccine. These have proved safe and efficacious worldwide. New-generation rabies vaccines, including recombinant rabies virus-based vaccines, vectored vaccines, DNA-based vaccines, and plant vaccines, have been explored to overcome the limitations of conventional rabies vaccines. This article discusses current and next-generation rabies vaccines in animals. |
---|