Cargando…
Reinforcement Learning Using a Continuous Time Actor-Critic Framework with Spiking Neurons
Animals repeat rewarded behaviors, but the physiological basis of reward-based learning has only been partially elucidated. On one hand, experimental evidence shows that the neuromodulator dopamine carries information about rewards and affects synaptic plasticity. On the other hand, the theory of re...
Autores principales: | Frémaux, Nicolas, Sprekeler, Henning, Gerstner, Wulfram |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3623741/ https://www.ncbi.nlm.nih.gov/pubmed/23592970 http://dx.doi.org/10.1371/journal.pcbi.1003024 |
Ejemplares similares
-
Spike-Based Reinforcement Learning in Continuous State and Action Space: When Policy Gradient Methods Fail
por: Vasilaki, Eleni, et al.
Publicado: (2009) -
Correction: Spike-Based Reinforcement Learning in Continuous State and Action Space: When Policy Gradient Methods Fail
por: Vasilaki, Eleni, et al.
Publicado: (2009) -
Neuromodulated Spike-Timing-Dependent Plasticity, and Theory of Three-Factor Learning Rules
por: Frémaux, Nicolas, et al.
Publicado: (2016) -
Changing the responses of cortical neurons from sub- to suprathreshold using single spikes in vivo
por: Pawlak, Verena, et al.
Publicado: (2013) -
Spike-timing prediction in cortical neurons with active dendrites
por: Naud, Richard, et al.
Publicado: (2014)