Cargando…
Iterative Reconstruction of High-Dimensional Gaussian Graphical Models Based on a New Method to Estimate Partial Correlations under Constraints
In the context of Gaussian Graphical Models (GGMs) with high-dimensional small sample data, we present a simple procedure, called PACOSE – standing for PArtial COrrelation SElection – to estimate partial correlations under the constraint that some of them are strictly zero. This method can also be e...
Autores principales: | Guillemot, Vincent, Bender, Andreas, Boulesteix, Anne-Laure |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3623825/ https://www.ncbi.nlm.nih.gov/pubmed/23593235 http://dx.doi.org/10.1371/journal.pone.0060536 |
Ejemplares similares
-
Regularized estimation of large-scale gene association networks using graphical Gaussian models
por: Krämer, Nicole, et al.
Publicado: (2009) -
The ‘un-shrunk’ partial correlation in Gaussian graphical models
por: Bernal, Victor, et al.
Publicado: (2021) -
A Partial Correlation Screening Approach for Controlling the False Positive Rate in Sparse Gaussian Graphical Models
por: Lafit, Ginette, et al.
Publicado: (2019) -
Penalized estimation of the Gaussian graphical model from data with replicates
por: van Wieringen, Wessel N., et al.
Publicado: (2021) -
On an additive partial correlation operator and nonparametric estimation of
graphical models
por: Lee, Kuang-Yao, et al.
Publicado: (2016)