Cargando…
Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks
Motivation: Inferring global regulatory networks (GRNs) from genome-wide data is a computational challenge central to the field of systems biology. Although the primary data currently used to infer GRNs consist of gene expression and proteomics measurements, there is a growing abundance of alternate...
Autores principales: | Greenfield, Alex, Hafemeister, Christoph, Bonneau, Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624811/ https://www.ncbi.nlm.nih.gov/pubmed/23525069 http://dx.doi.org/10.1093/bioinformatics/btt099 |
Ejemplares similares
-
Inference of Bacterial Small RNA Regulatory Networks and Integration with Transcription Factor-Driven Regulatory Networks
por: Arrieta-Ortiz, Mario L., et al.
Publicado: (2020) -
Boolean network inference from time series data incorporating prior biological knowledge
por: Haider, Saad, et al.
Publicado: (2012) -
DREAM3: Network Inference Using Dynamic Context Likelihood of Relatedness and the Inferelator
por: Madar, Aviv, et al.
Publicado: (2010) -
Gene regulatory network inference by point-based Gaussian approximation filters
incorporating the prior information
por: Jia, Bin, et al.
Publicado: (2013) -
Incorporating biological prior knowledge for Bayesian learning via maximal knowledge-driven information priors
por: Boluki, Shahin, et al.
Publicado: (2017)