Cargando…
Direct Band Gap Wurtzite Gallium Phosphide Nanowires
[Image: see text] The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations h...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2013
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624814/ https://www.ncbi.nlm.nih.gov/pubmed/23464761 http://dx.doi.org/10.1021/nl304723c |
_version_ | 1782266057334980608 |
---|---|
author | Assali, S. Zardo, I. Plissard, S. Kriegner, D. Verheijen, M. A. Bauer, G. Meijerink, A. Belabbes, A. Bechstedt, F. Haverkort, J. E. M. Bakkers, E. P. A. M. |
author_facet | Assali, S. Zardo, I. Plissard, S. Kriegner, D. Verheijen, M. A. Bauer, G. Meijerink, A. Belabbes, A. Bechstedt, F. Haverkort, J. E. M. Bakkers, E. P. A. M. |
author_sort | Assali, S. |
collection | PubMed |
description | [Image: see text] The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. |
format | Online Article Text |
id | pubmed-3624814 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-36248142013-04-15 Direct Band Gap Wurtzite Gallium Phosphide Nanowires Assali, S. Zardo, I. Plissard, S. Kriegner, D. Verheijen, M. A. Bauer, G. Meijerink, A. Belabbes, A. Bechstedt, F. Haverkort, J. E. M. Bakkers, E. P. A. M. Nano Lett [Image: see text] The main challenge for light-emitting diodes is to increase the efficiency in the green part of the spectrum. Gallium phosphide (GaP) with the normal cubic crystal structure has an indirect band gap, which severely limits the green emission efficiency. Band structure calculations have predicted a direct band gap for wurtzite GaP. Here, we report the fabrication of GaP nanowires with pure hexagonal crystal structure and demonstrate the direct nature of the band gap. We observe strong photoluminescence at a wavelength of 594 nm with short lifetime, typical for a direct band gap. Furthermore, by incorporation of aluminum or arsenic in the GaP nanowires, the emitted wavelength is tuned across an important range of the visible light spectrum (555–690 nm). This approach of crystal structure engineering enables new pathways to tailor materials properties enhancing the functionality. American Chemical Society 2013-03-06 2013-04-10 /pmc/articles/PMC3624814/ /pubmed/23464761 http://dx.doi.org/10.1021/nl304723c Text en Copyright © 2013 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) |
spellingShingle | Assali, S. Zardo, I. Plissard, S. Kriegner, D. Verheijen, M. A. Bauer, G. Meijerink, A. Belabbes, A. Bechstedt, F. Haverkort, J. E. M. Bakkers, E. P. A. M. Direct Band Gap Wurtzite Gallium Phosphide Nanowires |
title | Direct Band Gap Wurtzite Gallium Phosphide Nanowires |
title_full | Direct Band Gap Wurtzite Gallium Phosphide Nanowires |
title_fullStr | Direct Band Gap Wurtzite Gallium Phosphide Nanowires |
title_full_unstemmed | Direct Band Gap Wurtzite Gallium Phosphide Nanowires |
title_short | Direct Band Gap Wurtzite Gallium Phosphide Nanowires |
title_sort | direct band gap wurtzite gallium phosphide nanowires |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624814/ https://www.ncbi.nlm.nih.gov/pubmed/23464761 http://dx.doi.org/10.1021/nl304723c |
work_keys_str_mv | AT assalis directbandgapwurtzitegalliumphosphidenanowires AT zardoi directbandgapwurtzitegalliumphosphidenanowires AT plissards directbandgapwurtzitegalliumphosphidenanowires AT kriegnerd directbandgapwurtzitegalliumphosphidenanowires AT verheijenma directbandgapwurtzitegalliumphosphidenanowires AT bauerg directbandgapwurtzitegalliumphosphidenanowires AT meijerinka directbandgapwurtzitegalliumphosphidenanowires AT belabbesa directbandgapwurtzitegalliumphosphidenanowires AT bechstedtf directbandgapwurtzitegalliumphosphidenanowires AT haverkortjem directbandgapwurtzitegalliumphosphidenanowires AT bakkersepam directbandgapwurtzitegalliumphosphidenanowires |