Cargando…

Lesions of the Fasciculus Retroflexus Alter Footshock-Induced cFos Expression in the Mesopontine Rostromedial Tegmental Area of Rats

Midbrain dopamine neurons are an essential part of the circuitry underlying motivation and reinforcement. They are activated by rewards or reward-predicting cues and inhibited by reward omission. The lateral habenula (lHb), an epithalamic structure that forms reciprocal connections with midbrain dop...

Descripción completa

Detalles Bibliográficos
Autores principales: Brown, Paul Leon, Shepard, Paul D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625179/
https://www.ncbi.nlm.nih.gov/pubmed/23593280
http://dx.doi.org/10.1371/journal.pone.0060678
Descripción
Sumario:Midbrain dopamine neurons are an essential part of the circuitry underlying motivation and reinforcement. They are activated by rewards or reward-predicting cues and inhibited by reward omission. The lateral habenula (lHb), an epithalamic structure that forms reciprocal connections with midbrain dopamine neurons, shows the opposite response being activated by reward omission or aversive stimuli and inhibited by reward-predicting cues. It has been hypothesized that habenular input to midbrain dopamine neurons is conveyed via a feedforward inhibitory pathway involving the GABAergic mesopontine rostromedial tegmental area. Here, we show that exposing rats to low-intensity footshock (four, 0.5 mA shocks over 20 min) induces cFos expression in the rostromedial tegmental area and that this effect is prevented by lesions of the fasciculus retroflexus, the principal output pathway of the habenula. cFos expression is also observed in the medial portion of the lateral habenula, an area that receives dense DA innervation via the fr and the paraventricular nucleus of the thalamus, a stress sensitive area that also receives dopaminergic input. High-intensity footshock (120, 0.8 mA shocks over 40 min) also elevates cFos expression in the rostromedial tegmental area, medial and lateral aspects of the lateral habenula and the paraventricular thalamus. In contrast to low-intensity footshock, increases in cFos expression within the rostromedial tegmental area are not altered by fr lesions suggesting a role for non-habenular inputs during exposure to highly aversive stimuli. These data confirm the involvement of the lateral habenula in modulating the activity of rostromedial tegmental area neurons in response to mild aversive stimuli and suggest that dopamine input may contribute to footshock- induced activation of cFos expression in the lateral habenula.