Cargando…
DNA Variation in the SNAP25 Gene Confers Risk to ADHD and Is Associated with Reduced Expression in Prefrontal Cortex
BACKGROUND: The Coloboma mouse carries a ∼2 cM deletion encompassing the SNAP25 gene and has a hyperactive phenotype similar to that of ADHD. Such mice are 3 fold more active compared to their control littermates. Genetic association studies support a role for allelic variants of the human SNAP25 ge...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625226/ https://www.ncbi.nlm.nih.gov/pubmed/23593184 http://dx.doi.org/10.1371/journal.pone.0060274 |
Sumario: | BACKGROUND: The Coloboma mouse carries a ∼2 cM deletion encompassing the SNAP25 gene and has a hyperactive phenotype similar to that of ADHD. Such mice are 3 fold more active compared to their control littermates. Genetic association studies support a role for allelic variants of the human SNAP25 gene in predisposing to ADHD. METHODS/PRINCIPAL FINDINGS: We performed association analysis across the SNAP25 gene in 1,107 individuals (339 ADHD trios). To assess the functional relevance of the SNAP25-ADHD associated allele, we performed quantitative PCR on post-mortem tissue derived from the inferior frontal gyrus of 89 unaffected adults. Significant associations with the A allele of SNP rs362990 (χ(2) = 10, p-corrected = 0.019, OR = 1.5) and three marker haplotypes (rs6108461, rs362990 and rs362998) were observed. Furthermore, a significant additive decrease in the expression of the SNAP25 transcript as a function of the risk allele was also observed. This effect was detected at the haplotype level, where increasing copies of the ADHD-associated haplotype reduced the expression of the transcript. CONCLUSIONS: Our data show that DNA variation at SNAP25 confers risk to ADHD and reduces the expression of the transcript in a region of the brain that is critical for the regulation of attention and inhibition. |
---|