Cargando…

The Effect of Different Storage Conditions on the Physical Properties of Pigmented Medical Grade I Silicone Maxillofacial Material

Objective. This study aimed to evaluate the effect of different storage solutions that simulate acidic, alkaline, and sebum conditiions on the physical properties of pigmented (colorant elastomer) cosmesil M511 maxillofacial prosthetic material. Materials and Methods. Sixty specimens were prepared a...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Dharrab, Ayman A., Tayel, Seham B., Abodaya, Mona H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3625596/
https://www.ncbi.nlm.nih.gov/pubmed/23606978
http://dx.doi.org/10.1155/2013/582051
Descripción
Sumario:Objective. This study aimed to evaluate the effect of different storage solutions that simulate acidic, alkaline, and sebum conditiions on the physical properties of pigmented (colorant elastomer) cosmesil M511 maxillofacial prosthetic material. Materials and Methods. Sixty specimens were prepared according to the manufacturer's instructions and were tested before and after immersion of different storage conditions for six months at 37 °C. The following tests were performed: color changes (group I), solution absorption (group II), surface roughness (group III), and scanning electron microscopy (group IV). Results. There were no significant changes observed in the color and solution absorption tests while surface roughness revealed significant difference between control group and other testing storage medium groups, and this result was supported by SEM analysis that revealed limited surface changes. Conclusions. Cosmaseil material is an acceptable cross-linked formulation that withstands storage in different solutions with variable pH. The addition of pigment cannot vary the physical properties of these materials. Surface roughness test as well as SEM microscopic study showed moderate changes indicating a limited effect on the surface of the material.