Cargando…

Artificial Box C/D RNAs Affect Pre-mRNA Maturation in Human Cells

Box C/D small nucleolar RNAs (snoRNAs) are known to guide the 2′-O-ribose methylation of nucleotides in eukaryotic ribosomal RNAs and small nuclear RNAs. Recently snoRNAs are predicted to regulate posttranscriptional modifications of pre-mRNA. To expand understanding of the role of snoRNAs in contro...

Descripción completa

Detalles Bibliográficos
Autores principales: Stepanov, Grigoriy A., Semenov, Dmitry V., Savelyeva, Anna V., Kuligina, Elena V., Koval, Olga A., Rabinov, Igor V., Richter, Vladimir A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626359/
https://www.ncbi.nlm.nih.gov/pubmed/23607094
http://dx.doi.org/10.1155/2013/656158
Descripción
Sumario:Box C/D small nucleolar RNAs (snoRNAs) are known to guide the 2′-O-ribose methylation of nucleotides in eukaryotic ribosomal RNAs and small nuclear RNAs. Recently snoRNAs are predicted to regulate posttranscriptional modifications of pre-mRNA. To expand understanding of the role of snoRNAs in control of gene expression, in this study we tested the ability of artificial box C/D RNAs to affect the maturation of target pre-mRNA. We found that transfection of artificial box C/D snoRNA analogues directed to HSPA8 pre-mRNAs into human cells induced suppression of the target mRNA expression in a time- and dose-dependent manner. The artificial box C/D RNA directed to the branch point adenosine of the second intron, as well as the analogue directed to the last nucleotide of the second exon of the HSPA8 pre-mRNA caused the most prominent influence on the level of HSPA8 mRNAs. Neither box D nor the ability to direct 2′-O-methylation of nucleotides in target RNA was essential for the knockdown activity of artificial snoRNAs. Inasmuch as artificial box C/D RNAs decreased viability of transfected human cells, we propose that natural snoRNAs as well as their artificial analogues can influence the maturation of complementary pre-mRNA and can be effective regulators of vital cellular processes.