Cargando…
Insulin-like growth factor binding protein-3 inhibits monocyte adhesion to retinal endothelial cells in high glucose conditions
PURPOSE: Insulin-like growth factor binding protein-3 (IGFBP-3) is cytoprotective in the retina. The goal of this study was to investigate whether IGFBP-3 inhibits monocyte-endothelial cell adhesion associated with hyperglycemia. METHODS: Human retinal vascular endothelial cells (RECs) were grown in...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Vision
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626378/ https://www.ncbi.nlm.nih.gov/pubmed/23592916 |
Sumario: | PURPOSE: Insulin-like growth factor binding protein-3 (IGFBP-3) is cytoprotective in the retina. The goal of this study was to investigate whether IGFBP-3 inhibits monocyte-endothelial cell adhesion associated with hyperglycemia. METHODS: Human retinal vascular endothelial cells (RECs) were grown in normal (5 mM), medium (15 mM), or high glucose medium (25 mM) for 72 h. After 48 h, cells were transfected with endothelial-cell-specific, non-IGF binding IGFBP-3 plasmid DNA (IGFBP-3NB) at 1 μg/ml for 24 h. Cells were serum starved for 16 h and treated with tumor necrosis factor-alpha (TNF-α; 10 ng/ml) for 4 h. Cell proteins were extracted and analyzed for intercellular adhesion molecule-1 (ICAM-1) expression with enzyme-linked immunosorbent assay. Additional RECs were plated onto attachment factor-coated slides, grown to 90% confluence in high glucose medium, and transfected with IGFBP-3 NB plasmid DNA or ICAM-1 small interfering RNA before treatment with or without TNF-α (10 ng/ml) for 4 h. Slides were then mounted in a parallel-plate flow chamber and subjected to a continuous flow of U937 human monocytes (10(5)/ml) in culture medium at shear stresses of 2 dynes/cm(2), with continual exposure to TNF-α. RESULTS: In high ambient glucose, overexpression of IGFBP-3 in RECs significantly decreased ICAM-1 expression when compared to the TNF-α-treated samples, whereas TNF-α increased monocyte-endothelial cell adhesion. IGFBP-3 significantly decreased monocyte adhesion to RECs in the high glucose condition. RECs transfected with ICAM-1 siRNA also had a decreased number of monocytes attached compared with the scrambled siRNA control. CONCLUSIONS: Data suggest that IGFBP-3 reduces monocyte-endothelial cell adhesion through decreased ICAM-1 levels in a hyperglycemic environment. This is the first demonstration of the role of IGFBP-3 in inhibiting monocyte-endothelial cell adhesion. |
---|