Cargando…
Automatic thickness estimation for skeletal muscle in ultrasonography: evaluation of two enhancement methods
BACKGROUND: Ultrasonography is a convenient technique to investigate muscle properties and has been widely used to look into muscle functions since it is non-invasive and real-time. Muscle thickness, a quantification which can effectively reflect the muscle activities during muscle contraction, is a...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626569/ https://www.ncbi.nlm.nih.gov/pubmed/23339544 http://dx.doi.org/10.1186/1475-925X-12-6 |
_version_ | 1782266204382035968 |
---|---|
author | Han, Pan Chen, Ye Ao, Lijuan Xie, Gaosheng Li, Huihui Wang, Lei Zhou, Yongjin |
author_facet | Han, Pan Chen, Ye Ao, Lijuan Xie, Gaosheng Li, Huihui Wang, Lei Zhou, Yongjin |
author_sort | Han, Pan |
collection | PubMed |
description | BACKGROUND: Ultrasonography is a convenient technique to investigate muscle properties and has been widely used to look into muscle functions since it is non-invasive and real-time. Muscle thickness, a quantification which can effectively reflect the muscle activities during muscle contraction, is an important measure for musculoskeletal studies using ultrasonography. The traditional manual operation to read muscle thickness is subjective and time-consuming, therefore a number of studies have focused on the automatic estimation of muscle fascicle orientation and muscle thickness, to which the speckle noises in ultrasound images could be the major obstacle. There have been two popular methods proposed to enhance the hyperechoic regions over the speckles in ultrasonography, namely Gabor Filtering and Multiscale Vessel Enhancement Filtering (MVEF). METHODS: A study on gastrocnemius muscle is conducted to quantitatively evaluate whether and how these two methods could help the automatic estimation of the muscle thickness based on Revoting Hough Transform (RVHT). The muscle thickness results obtained from each of the two methods are compared with the results from manual measurement, respectively. Data from an aged subject with cerebral infarction is also studied. RESULTS: It’s shown in the experiments that, Gabor Filtering and MVEF can both enable RVHT to generate comparable results of muscle thickness to those by manual drawing (mean ± SD, 1.45 ± 0.48 and 1.38 ± 0.56 mm respectively). However, the MVEF method requires much less computation than Gabor Filtering. CONCLUSIONS: Both methods, as preprocessing procedure can enable RVHT the automatic estimation of muscle thickness and MVEF is believed to be a better choice for real-time applications. |
format | Online Article Text |
id | pubmed-3626569 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-36265692013-04-23 Automatic thickness estimation for skeletal muscle in ultrasonography: evaluation of two enhancement methods Han, Pan Chen, Ye Ao, Lijuan Xie, Gaosheng Li, Huihui Wang, Lei Zhou, Yongjin Biomed Eng Online Research BACKGROUND: Ultrasonography is a convenient technique to investigate muscle properties and has been widely used to look into muscle functions since it is non-invasive and real-time. Muscle thickness, a quantification which can effectively reflect the muscle activities during muscle contraction, is an important measure for musculoskeletal studies using ultrasonography. The traditional manual operation to read muscle thickness is subjective and time-consuming, therefore a number of studies have focused on the automatic estimation of muscle fascicle orientation and muscle thickness, to which the speckle noises in ultrasound images could be the major obstacle. There have been two popular methods proposed to enhance the hyperechoic regions over the speckles in ultrasonography, namely Gabor Filtering and Multiscale Vessel Enhancement Filtering (MVEF). METHODS: A study on gastrocnemius muscle is conducted to quantitatively evaluate whether and how these two methods could help the automatic estimation of the muscle thickness based on Revoting Hough Transform (RVHT). The muscle thickness results obtained from each of the two methods are compared with the results from manual measurement, respectively. Data from an aged subject with cerebral infarction is also studied. RESULTS: It’s shown in the experiments that, Gabor Filtering and MVEF can both enable RVHT to generate comparable results of muscle thickness to those by manual drawing (mean ± SD, 1.45 ± 0.48 and 1.38 ± 0.56 mm respectively). However, the MVEF method requires much less computation than Gabor Filtering. CONCLUSIONS: Both methods, as preprocessing procedure can enable RVHT the automatic estimation of muscle thickness and MVEF is believed to be a better choice for real-time applications. BioMed Central 2013-01-22 /pmc/articles/PMC3626569/ /pubmed/23339544 http://dx.doi.org/10.1186/1475-925X-12-6 Text en Copyright © 2013 Han et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Han, Pan Chen, Ye Ao, Lijuan Xie, Gaosheng Li, Huihui Wang, Lei Zhou, Yongjin Automatic thickness estimation for skeletal muscle in ultrasonography: evaluation of two enhancement methods |
title | Automatic thickness estimation for skeletal muscle in ultrasonography: evaluation of two enhancement methods |
title_full | Automatic thickness estimation for skeletal muscle in ultrasonography: evaluation of two enhancement methods |
title_fullStr | Automatic thickness estimation for skeletal muscle in ultrasonography: evaluation of two enhancement methods |
title_full_unstemmed | Automatic thickness estimation for skeletal muscle in ultrasonography: evaluation of two enhancement methods |
title_short | Automatic thickness estimation for skeletal muscle in ultrasonography: evaluation of two enhancement methods |
title_sort | automatic thickness estimation for skeletal muscle in ultrasonography: evaluation of two enhancement methods |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3626569/ https://www.ncbi.nlm.nih.gov/pubmed/23339544 http://dx.doi.org/10.1186/1475-925X-12-6 |
work_keys_str_mv | AT hanpan automaticthicknessestimationforskeletalmuscleinultrasonographyevaluationoftwoenhancementmethods AT chenye automaticthicknessestimationforskeletalmuscleinultrasonographyevaluationoftwoenhancementmethods AT aolijuan automaticthicknessestimationforskeletalmuscleinultrasonographyevaluationoftwoenhancementmethods AT xiegaosheng automaticthicknessestimationforskeletalmuscleinultrasonographyevaluationoftwoenhancementmethods AT lihuihui automaticthicknessestimationforskeletalmuscleinultrasonographyevaluationoftwoenhancementmethods AT wanglei automaticthicknessestimationforskeletalmuscleinultrasonographyevaluationoftwoenhancementmethods AT zhouyongjin automaticthicknessestimationforskeletalmuscleinultrasonographyevaluationoftwoenhancementmethods |