Cargando…

Treatment of mesial temporal lobe epilepsy with amygdalohippocampal stimulation: A case series and review of the literature

Deep brain stimulation (DBS) is being used with increasing frequency for the treatment of mesial temporal lobe epilepsy (MTLE). Here, we report two patients treated with amygdalohippocampal (AH)-DBS for drug-resistant temporal lobe epilepsy. Two patients with temporal lobe epilepsy were admitted to...

Descripción completa

Detalles Bibliográficos
Autores principales: MIN, BAO, GUOMING, LUAN, JIAN, ZHOU
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627467/
https://www.ncbi.nlm.nih.gov/pubmed/23596499
http://dx.doi.org/10.3892/etm.2013.968
Descripción
Sumario:Deep brain stimulation (DBS) is being used with increasing frequency for the treatment of mesial temporal lobe epilepsy (MTLE). Here, we report two patients treated with amygdalohippocampal (AH)-DBS for drug-resistant temporal lobe epilepsy. Two patients with temporal lobe epilepsy were admitted to Beijing Sanbo Brain Hospital. The first patient was a 34-year-old male with a 31-year history of epileptic seizures. The second patient was a 27-year-old male with a 19-year history of drug-resistant epilepsy. The patients received a comprehensive presurgical workup and were considered unsuitable candidates for resective surgery. AH-DBS was recommended for the two patients. The last follow-up for patient 1 was 36 months after surgery and the final parameter settings were 3.6 mA, 450 μsec, 130 Hz and cycling with 60 sec on, 180 sec off. The last follow-up for patient 2 was 18 months after surgery and the final parameter settings were 2.6 mA, 450 μsec, 130 Hz and cycling with 60 sec on, 180 sec off. The patients experienced a seizure frequency reduction of 90 and 65%, respectively, with respect to the baseline. AH-DBS is a safe, micro-invasive alternative in patients with MTLE who are not candidates for resective surgery. It effectively reduces seizures without a negative effect on memory performance.