Cargando…
Ensuring the statistical soundness of competitive gene set approaches: gene filtering and genome-scale coverage are essential
In this article, we focus on the analysis of competitive gene set methods for detecting the statistical significance of pathways from gene expression data. Our main result is to demonstrate that some of the most frequently used gene set methods, GSEA, GSEArot and GAGE, are severely influenced by the...
Autores principales: | Tripathi, Shailesh, Glazko, Galina V., Emmert-Streib, Frank |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627569/ https://www.ncbi.nlm.nih.gov/pubmed/23389952 http://dx.doi.org/10.1093/nar/gkt054 |
Ejemplares similares
-
Gene Sets Net Correlations Analysis (GSNCA): a multivariate differential coexpression test for gene sets
por: Rahmatallah, Yasir, et al.
Publicado: (2014) -
Comparative evaluation of gene set analysis approaches for RNA-Seq data
por: Rahmatallah, Yasir, et al.
Publicado: (2014) -
Prognostic gene expression signatures of breast cancer are lacking a sensible biological meaning
por: Manjang, Kalifa, et al.
Publicado: (2021) -
Gene set analysis approaches for RNA-seq data: performance evaluation and application guideline
por: Rahmatallah, Yasir, et al.
Publicado: (2016) -
GSAR: Bioconductor package for Gene Set analysis in R
por: Rahmatallah, Yasir, et al.
Publicado: (2017)