Cargando…

Specific recognition and stabilization of monomeric and multimeric G-quadruplexes by cationic porphyrin TMPipEOPP under molecular crowding conditions

Ligands targeting telomeric G-quadruplexs are considered good candidates for anticancer drugs. However, current studies on G-quadruplex ligands focus exclusively on the interactions of ligands and monomeric G-quadruplexes under dilute conditions. Living cells are crowded with biomacromolecules, and...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Li-Na, Wu, Bin, Kong, De-Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627595/
https://www.ncbi.nlm.nih.gov/pubmed/23430152
http://dx.doi.org/10.1093/nar/gkt103
Descripción
Sumario:Ligands targeting telomeric G-quadruplexs are considered good candidates for anticancer drugs. However, current studies on G-quadruplex ligands focus exclusively on the interactions of ligands and monomeric G-quadruplexes under dilute conditions. Living cells are crowded with biomacromolecules, and the ∼200-nucleotide G-rich single-stranded overhang of human telomeric DNA has the potential to fold into multimeric G-quadruplex structures containing several G-quadruplex units. Studies on interactions between ligands and multimeric G-quadruplexes under molecular crowding conditions could provide a new route for screening specific telomeric G-quadruplex-targeting ligands. Herein, TMPipEOPP, a cationic porphyrin derivative designed by us, was demonstrated as a promising multimeric telomeric G-quadruplex ligand under molecular crowding conditions. It could highly specifically recognize G-quadruplexes. It could also promote the formation of G-quadruplexes and stabilize them. Detailed studies showed that TMPipEOPP interacted with monomeric G-quadruplexes in sandwich-like end-stacking mode of quadruplex/TMPipEOPP/quadruplex and interacted with multimeric human telomeric G-quadruplexes by intercalating into the pocket between two adjacent G-quadruplex units. The pocket size greatly affected TMPipEOPP binding. A larger pocket was advantageous for the intercalation of TMPipEOPP. This work provides new insights into the ligand-binding properties of multimeric G-quadruplexes under molecular crowding conditions and introduces a new route for screening anticancer drugs targeting telomeric G-quadruplexes.