Cargando…

An optimized web-based approach for collaborative stereoscopic medical visualization

OBJECTIVE: Medical visualization tools have traditionally been constrained to tethered imaging workstations or proprietary client viewers, typically part of hospital radiology systems. To improve accessibility to real-time, remote, interactive, stereoscopic visualization and to enable collaboration...

Descripción completa

Detalles Bibliográficos
Autores principales: Kaspar, Mathias, Parsad, Nigel M, Silverstein, Jonathan C
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BMJ Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628048/
https://www.ncbi.nlm.nih.gov/pubmed/23048008
http://dx.doi.org/10.1136/amiajnl-2012-001057
Descripción
Sumario:OBJECTIVE: Medical visualization tools have traditionally been constrained to tethered imaging workstations or proprietary client viewers, typically part of hospital radiology systems. To improve accessibility to real-time, remote, interactive, stereoscopic visualization and to enable collaboration among multiple viewing locations, we developed an open source approach requiring only a standard web browser with no added client-side software. MATERIALS AND METHODS: Our collaborative, web-based, stereoscopic, visualization system, CoWebViz, has been used successfully for the past 2 years at the University of Chicago to teach immersive virtual anatomy classes. It is a server application that streams server-side visualization applications to client front-ends, comprised solely of a standard web browser with no added software. RESULTS: We describe optimization considerations, usability, and performance results, which make CoWebViz practical for broad clinical use. We clarify technical advances including: enhanced threaded architecture, optimized visualization distribution algorithms, a wide range of supported stereoscopic presentation technologies, and the salient theoretical and empirical network parameters that affect our web-based visualization approach. DISCUSSION: The implementations demonstrate usability and performance benefits of a simple web-based approach for complex clinical visualization scenarios. Using this approach overcomes technical challenges that require third-party web browser plug-ins, resulting in the most lightweight client. CONCLUSIONS: Compared to special software and hardware deployments, unmodified web browsers enhance remote user accessibility to interactive medical visualization. Whereas local hardware and software deployments may provide better interactivity than remote applications, our implementation demonstrates that a simplified, stable, client approach using standard web browsers is sufficient for high quality three-dimensional, stereoscopic, collaborative and interactive visualization.