Cargando…
Whole genome sequencing identifies zoonotic transmission of MRSA isolates with the novel mecA homologue mecC
Several methicillin-resistant Staphylococcus aureus (MRSA) lineages that carry a novel mecA homologue (mecC) have recently been described in livestock and humans. In Denmark, two independent human cases of mecC-MRSA infection have been linked to a livestock reservoir. We investigated the molecular e...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
WILEY-VCH Verlag
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628104/ https://www.ncbi.nlm.nih.gov/pubmed/23526809 http://dx.doi.org/10.1002/emmm.201202413 |
Sumario: | Several methicillin-resistant Staphylococcus aureus (MRSA) lineages that carry a novel mecA homologue (mecC) have recently been described in livestock and humans. In Denmark, two independent human cases of mecC-MRSA infection have been linked to a livestock reservoir. We investigated the molecular epidemiology of the associated MRSA isolates using whole genome sequencing (WGS). Single nucleotide polymorphisms (SNP) were defined and compared to a reference genome to place the isolates into a phylogenetic context. Phylogenetic analysis revealed two distinct farm-specific clusters comprising isolates from the human case and their own livestock, whereas human and animal isolates from the same farm only differed by a small number of SNPs, which supports the likelihood of zoonotic transmission. Further analyses identified a number of genes and mutations that may be associated with host interaction and virulence. This study demonstrates that mecC-MRSA ST130 isolates are capable of transmission between animals and humans, and underscores the potential of WGS in epidemiological investigations and source tracking of bacterial infections. |
---|