Cargando…

Tumor suppressive microRNA-424 inhibits osteosarcoma cell migration and invasion via targeting fatty acid synthase

Numerous studies have recently suggested that miRNAs contribute to the development of various types of human cancer as well as to their invasive and metastatic capacities. The aim of this study was to investigate the functional significance of miR-424 and to identify its possible target genes in ost...

Descripción completa

Detalles Bibliográficos
Autores principales: LONG, XING HUA, MAO, JIAN HUA, PENG, AI FEN, ZHOU, YANG, HUANG, SHAN HU, LIU, ZHI LI
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628901/
https://www.ncbi.nlm.nih.gov/pubmed/23599729
http://dx.doi.org/10.3892/etm.2013.959
Descripción
Sumario:Numerous studies have recently suggested that miRNAs contribute to the development of various types of human cancer as well as to their invasive and metastatic capacities. The aim of this study was to investigate the functional significance of miR-424 and to identify its possible target genes in osteosarcoma (OS) cells. Previously, inhibition of fatty acid synthase (FASN) has been shown to suppress OS cell proliferation, invasion and migration. The prediction was made using the microRNA.org and TargetScan.human6.0.database. The results showed that FASN is a promising target gene of miR-424. FASN may be a direct target of miR-424 as shown by the luciferase reporter assays. Furthermore, miR-424 expression was increased in osteosarcoma cells by transfection with has-miR-424. FASN mRNA and protein expression levels were measured by RT-PCR and western blot analysis. Cell migration and invasion was measured using Transwell migration and Transwell invasion assays. Expression levels of FASN mRNA and protein were greatly decreased in U2OS cells transfected with has-miR-424. The migration and invasion of cells was significantly decreased by the upregulation of miR-424. These findings suggested that miR-424 plays a key role in inhibiting OS cell migration and invasion through targeting FASN.