Cargando…

A computational study of base-catalyzed reactions of cyclic 1,2-diones: cyclobutane-1,2-dione

The reaction of cyclobutane-1,2-dione with hydroxide was studied by a variety of ab initio (MP2, SCS-MP2, CCSD(T), CEPA/1) and density functional (M06-2X) methods. Three possible reaction paths of the initially formed tetrahedral adduct leading to either 1-hydroxycyclopropane-1-carboxylate (benzilic...

Descripción completa

Detalles Bibliográficos
Autores principales: Sultana, Nargis, Fabian, Walter M F
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3628910/
https://www.ncbi.nlm.nih.gov/pubmed/23616800
http://dx.doi.org/10.3762/bjoc.9.64
Descripción
Sumario:The reaction of cyclobutane-1,2-dione with hydroxide was studied by a variety of ab initio (MP2, SCS-MP2, CCSD(T), CEPA/1) and density functional (M06-2X) methods. Three possible reaction paths of the initially formed tetrahedral adduct leading to either 1-hydroxycyclopropane-1-carboxylate (benzilic acid type rearrangement, path A), α-oxobutanoate (path B) or γ-oxobutanoate (path C) were considered. Although the latter two products show similar or even more negative Gibbs free energies of reaction than calculated for the benzilic acid type rearrangement, the Gibbs free energies of activation are substantially higher. According to the calculations, the only feasible reaction appears to be the formation of 1-hydroxycyclopropane-1-carboxylate, which is corroborated by previous experimental observations.