Cargando…
Superoxide Mediates Direct Current Electric Field-Induced Directional Migration of Glioma Cells through the Activation of AKT and ERK
Direct current electric fields (DCEFs) can induce directional migration for many cell types through activation of intracellular signaling pathways. However, the mechanisms that bridge extracellular electrical stimulation with intracellular signaling remain largely unknown. In the current study, we f...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3629049/ https://www.ncbi.nlm.nih.gov/pubmed/23613809 http://dx.doi.org/10.1371/journal.pone.0061195 |
_version_ | 1782266508135628800 |
---|---|
author | Li, Fei Chen, Tunan Hu, Shengli Lin, Jiangkai Hu, Rong Feng, Hua |
author_facet | Li, Fei Chen, Tunan Hu, Shengli Lin, Jiangkai Hu, Rong Feng, Hua |
author_sort | Li, Fei |
collection | PubMed |
description | Direct current electric fields (DCEFs) can induce directional migration for many cell types through activation of intracellular signaling pathways. However, the mechanisms that bridge extracellular electrical stimulation with intracellular signaling remain largely unknown. In the current study, we found that a DCEF can induce the directional migration of U87, C6 and U251 glioma cells to the cathode and stimulate the production of hydrogen peroxide and superoxide. Subsequent studies demonstrated that the electrotaxis of glioma cells were abolished by the superoxide inhibitor N-acetyl-l-cysteine (NAC) or overexpression of mitochondrial superoxide dismutase (MnSOD), but was not affected by inhibition of hydrogen peroxide through the overexpression of catalase. Furthermore, we found that the presence of NAC, as well as the overexpression of MnSOD, could almost completely abolish the activation of Akt, extracellular-signal-regulated kinase (Erk)1/2, c-Jun N-terminal kinase (JNK), and p38, although only JNK and p38 were affected by overexpression of catalase. The presenting of specific inhibitors can decrease the activation of Erk1/2 or Akt as well as the directional migration of glioma cells. Collectively, our data demonstrate that superoxide may play a critical role in DCEF-induced directional migration of glioma cells through the regulation of Akt and Erk1/2 activation. This study provides novel evidence that the superoxide is at least one of the “bridges” coupling the extracellular electric stimulation to the intracellular signals during DCEF-mediated cell directional migration. |
format | Online Article Text |
id | pubmed-3629049 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36290492013-04-23 Superoxide Mediates Direct Current Electric Field-Induced Directional Migration of Glioma Cells through the Activation of AKT and ERK Li, Fei Chen, Tunan Hu, Shengli Lin, Jiangkai Hu, Rong Feng, Hua PLoS One Research Article Direct current electric fields (DCEFs) can induce directional migration for many cell types through activation of intracellular signaling pathways. However, the mechanisms that bridge extracellular electrical stimulation with intracellular signaling remain largely unknown. In the current study, we found that a DCEF can induce the directional migration of U87, C6 and U251 glioma cells to the cathode and stimulate the production of hydrogen peroxide and superoxide. Subsequent studies demonstrated that the electrotaxis of glioma cells were abolished by the superoxide inhibitor N-acetyl-l-cysteine (NAC) or overexpression of mitochondrial superoxide dismutase (MnSOD), but was not affected by inhibition of hydrogen peroxide through the overexpression of catalase. Furthermore, we found that the presence of NAC, as well as the overexpression of MnSOD, could almost completely abolish the activation of Akt, extracellular-signal-regulated kinase (Erk)1/2, c-Jun N-terminal kinase (JNK), and p38, although only JNK and p38 were affected by overexpression of catalase. The presenting of specific inhibitors can decrease the activation of Erk1/2 or Akt as well as the directional migration of glioma cells. Collectively, our data demonstrate that superoxide may play a critical role in DCEF-induced directional migration of glioma cells through the regulation of Akt and Erk1/2 activation. This study provides novel evidence that the superoxide is at least one of the “bridges” coupling the extracellular electric stimulation to the intracellular signals during DCEF-mediated cell directional migration. Public Library of Science 2013-04-16 /pmc/articles/PMC3629049/ /pubmed/23613809 http://dx.doi.org/10.1371/journal.pone.0061195 Text en © 2013 Li et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Li, Fei Chen, Tunan Hu, Shengli Lin, Jiangkai Hu, Rong Feng, Hua Superoxide Mediates Direct Current Electric Field-Induced Directional Migration of Glioma Cells through the Activation of AKT and ERK |
title | Superoxide Mediates Direct Current Electric Field-Induced Directional Migration of Glioma Cells through the Activation of AKT and ERK |
title_full | Superoxide Mediates Direct Current Electric Field-Induced Directional Migration of Glioma Cells through the Activation of AKT and ERK |
title_fullStr | Superoxide Mediates Direct Current Electric Field-Induced Directional Migration of Glioma Cells through the Activation of AKT and ERK |
title_full_unstemmed | Superoxide Mediates Direct Current Electric Field-Induced Directional Migration of Glioma Cells through the Activation of AKT and ERK |
title_short | Superoxide Mediates Direct Current Electric Field-Induced Directional Migration of Glioma Cells through the Activation of AKT and ERK |
title_sort | superoxide mediates direct current electric field-induced directional migration of glioma cells through the activation of akt and erk |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3629049/ https://www.ncbi.nlm.nih.gov/pubmed/23613809 http://dx.doi.org/10.1371/journal.pone.0061195 |
work_keys_str_mv | AT lifei superoxidemediatesdirectcurrentelectricfieldinduceddirectionalmigrationofgliomacellsthroughtheactivationofaktanderk AT chentunan superoxidemediatesdirectcurrentelectricfieldinduceddirectionalmigrationofgliomacellsthroughtheactivationofaktanderk AT hushengli superoxidemediatesdirectcurrentelectricfieldinduceddirectionalmigrationofgliomacellsthroughtheactivationofaktanderk AT linjiangkai superoxidemediatesdirectcurrentelectricfieldinduceddirectionalmigrationofgliomacellsthroughtheactivationofaktanderk AT hurong superoxidemediatesdirectcurrentelectricfieldinduceddirectionalmigrationofgliomacellsthroughtheactivationofaktanderk AT fenghua superoxidemediatesdirectcurrentelectricfieldinduceddirectionalmigrationofgliomacellsthroughtheactivationofaktanderk |