Cargando…
Detection of Vulnerable Atherosclerotic Plaque and Prediction of Thrombosis Events in a Rabbit Model Using (18)F-FDG -PET/CT
BACKGROUND: Detection of vulnerable plaques could be clinically significant in the prevention of cardiovascular events. We aimed to compare Fluorine-18 fluorodeoxyglucose ((18)F-FDG) uptake in vulnerable and stable plaques, and investigate the feasibility of predicting thrombosis events using Positr...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3629173/ https://www.ncbi.nlm.nih.gov/pubmed/23613798 http://dx.doi.org/10.1371/journal.pone.0061140 |
Sumario: | BACKGROUND: Detection of vulnerable plaques could be clinically significant in the prevention of cardiovascular events. We aimed to compare Fluorine-18 fluorodeoxyglucose ((18)F-FDG) uptake in vulnerable and stable plaques, and investigate the feasibility of predicting thrombosis events using Positron Emission Tomography/Computed Tomography (PET/CT) angiography. METHODS: Atherosclerosis was induced in 23 male New Zealand white rabbits. The rabbits underwent pharmacological triggering to induce thrombosis. A pre-triggered PET/CTA scan and a post-triggered PET/CTA scan were respectively performed. (18)F-FDG uptake by the aorta was expressed as maximal standardized uptake value (SUV(max)) and mean SUV (SUV(mean)). SUVs were measured on serial 7.5 mm arterial segments. RESULTS: Thrombosis was identified in 15 of 23 rabbits. The pre-triggered SUV(mean) and SUV(max) were 0.768±0.111 and 0.804±0.120, respectively, in the arterial segments with stable plaque, and 1.097±0.189 and 1.229±0.290, respectively, in the arterial segments with vulnerable plaque (P<0.001, respectively). The post-triggered SUV(mean) and SUV(max) were 0.849±0.167 and 0.906±0.191, respectively in the arterial segments without thrombosis, and 1.152±0.258 and 1.294±0.313, respectively in the arterial segments with thrombosis (P<0.001, respectively). The values of SUV(mean) in the pre-triggered arterial segments were used to plot a receiver operating characteristic curve (ROC) for predicting thrombosis events. Area under the curve (AUC) was 0.898. Maximal sensitivity and specificity (75.4% and 88.5%, respectively) were obtained when SUV(mean) was 0.882. CONCLUSIONS: Vulnerable and stable plaques can be distinguished by quantitative analysis of (18)F-FDG uptake in the arterial segments in this rabbit model. PET/CT may be used for predicting thrombosis events and risk-stratification in patients with atherosclerotic disease. |
---|