Cargando…
Mutations in FLS2 Ser-938 Dissect Signaling Activation in FLS2-Mediated Arabidopsis Immunity
FLAGELLIN-SENSING 2 (FLS2) is a leucine-rich repeat/transmembrane domain/protein kinase (LRR-RLK) that is the plant receptor for bacterial flagellin or the flagellin-derived flg22 peptide. Previous work has shown that after flg22 binding, FLS2 releases BIK1 kinase and homologs and associates with BA...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630090/ https://www.ncbi.nlm.nih.gov/pubmed/23637603 http://dx.doi.org/10.1371/journal.ppat.1003313 |
_version_ | 1782266652734259200 |
---|---|
author | Cao, Yangrong Aceti, David J. Sabat, Grzegorz Song, Junqi Makino, Shin-ichi Fox, Brian G. Bent, Andrew F. |
author_facet | Cao, Yangrong Aceti, David J. Sabat, Grzegorz Song, Junqi Makino, Shin-ichi Fox, Brian G. Bent, Andrew F. |
author_sort | Cao, Yangrong |
collection | PubMed |
description | FLAGELLIN-SENSING 2 (FLS2) is a leucine-rich repeat/transmembrane domain/protein kinase (LRR-RLK) that is the plant receptor for bacterial flagellin or the flagellin-derived flg22 peptide. Previous work has shown that after flg22 binding, FLS2 releases BIK1 kinase and homologs and associates with BAK1 kinase, and that FLS2 kinase activity is critical for FLS2 function. However, the detailed mechanisms for activation of FLS2 signaling remain unclear. The present study initially identified multiple FLS2 in vitro phosphorylation sites and found that Serine-938 is important for FLS2 function in vivo. FLS2-mediated immune responses are abolished in transgenic plants expressing FLS2(S938A), while the acidic phosphomimic mutants FLS2(S938D) and FLS2(S938E) conferred responses similar to wild-type FLS2. FLS2-BAK1 association and FLS2-BIK1 disassociation after flg22 exposure still occur with FLS2(S938A), demonstrating that flg22-induced BIK1 release and BAK1 binding are not sufficient for FLS2 activity, and that Ser-938 controls other aspects of FLS2 activity. Purified BIK1 still phosphorylated purified FLS2(S938A) and FLS2(S938D) mutant kinase domains in vitro. Phosphorylation of BIK1 and homologs after flg22 exposure was disrupted in transgenic Arabidopsis thaliana plants expressing FLS2(S938A) or FLS2(D997A) (a kinase catalytic site mutant), but was normally induced in FLS2(S938D) plants. BIK1 association with FLS2 required a kinase-active FLS2, but FLS2-BAK1 association did not. Hence FLS2-BIK1 dissociation and FLS2-BAK1 association are not sufficient for FLS2-mediated defense activation, but the proposed FLS2 phosphorylation site Ser-938 and FLS2 kinase activity are needed both for overall defense activation and for appropriate flg22-stimulated phosphorylation of BIK1 and homologs. |
format | Online Article Text |
id | pubmed-3630090 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36300902013-05-01 Mutations in FLS2 Ser-938 Dissect Signaling Activation in FLS2-Mediated Arabidopsis Immunity Cao, Yangrong Aceti, David J. Sabat, Grzegorz Song, Junqi Makino, Shin-ichi Fox, Brian G. Bent, Andrew F. PLoS Pathog Research Article FLAGELLIN-SENSING 2 (FLS2) is a leucine-rich repeat/transmembrane domain/protein kinase (LRR-RLK) that is the plant receptor for bacterial flagellin or the flagellin-derived flg22 peptide. Previous work has shown that after flg22 binding, FLS2 releases BIK1 kinase and homologs and associates with BAK1 kinase, and that FLS2 kinase activity is critical for FLS2 function. However, the detailed mechanisms for activation of FLS2 signaling remain unclear. The present study initially identified multiple FLS2 in vitro phosphorylation sites and found that Serine-938 is important for FLS2 function in vivo. FLS2-mediated immune responses are abolished in transgenic plants expressing FLS2(S938A), while the acidic phosphomimic mutants FLS2(S938D) and FLS2(S938E) conferred responses similar to wild-type FLS2. FLS2-BAK1 association and FLS2-BIK1 disassociation after flg22 exposure still occur with FLS2(S938A), demonstrating that flg22-induced BIK1 release and BAK1 binding are not sufficient for FLS2 activity, and that Ser-938 controls other aspects of FLS2 activity. Purified BIK1 still phosphorylated purified FLS2(S938A) and FLS2(S938D) mutant kinase domains in vitro. Phosphorylation of BIK1 and homologs after flg22 exposure was disrupted in transgenic Arabidopsis thaliana plants expressing FLS2(S938A) or FLS2(D997A) (a kinase catalytic site mutant), but was normally induced in FLS2(S938D) plants. BIK1 association with FLS2 required a kinase-active FLS2, but FLS2-BAK1 association did not. Hence FLS2-BIK1 dissociation and FLS2-BAK1 association are not sufficient for FLS2-mediated defense activation, but the proposed FLS2 phosphorylation site Ser-938 and FLS2 kinase activity are needed both for overall defense activation and for appropriate flg22-stimulated phosphorylation of BIK1 and homologs. Public Library of Science 2013-04-18 /pmc/articles/PMC3630090/ /pubmed/23637603 http://dx.doi.org/10.1371/journal.ppat.1003313 Text en © 2013 Cao et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Cao, Yangrong Aceti, David J. Sabat, Grzegorz Song, Junqi Makino, Shin-ichi Fox, Brian G. Bent, Andrew F. Mutations in FLS2 Ser-938 Dissect Signaling Activation in FLS2-Mediated Arabidopsis Immunity |
title | Mutations in FLS2 Ser-938 Dissect Signaling Activation in FLS2-Mediated Arabidopsis Immunity |
title_full | Mutations in FLS2 Ser-938 Dissect Signaling Activation in FLS2-Mediated Arabidopsis Immunity |
title_fullStr | Mutations in FLS2 Ser-938 Dissect Signaling Activation in FLS2-Mediated Arabidopsis Immunity |
title_full_unstemmed | Mutations in FLS2 Ser-938 Dissect Signaling Activation in FLS2-Mediated Arabidopsis Immunity |
title_short | Mutations in FLS2 Ser-938 Dissect Signaling Activation in FLS2-Mediated Arabidopsis Immunity |
title_sort | mutations in fls2 ser-938 dissect signaling activation in fls2-mediated arabidopsis immunity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630090/ https://www.ncbi.nlm.nih.gov/pubmed/23637603 http://dx.doi.org/10.1371/journal.ppat.1003313 |
work_keys_str_mv | AT caoyangrong mutationsinfls2ser938dissectsignalingactivationinfls2mediatedarabidopsisimmunity AT acetidavidj mutationsinfls2ser938dissectsignalingactivationinfls2mediatedarabidopsisimmunity AT sabatgrzegorz mutationsinfls2ser938dissectsignalingactivationinfls2mediatedarabidopsisimmunity AT songjunqi mutationsinfls2ser938dissectsignalingactivationinfls2mediatedarabidopsisimmunity AT makinoshinichi mutationsinfls2ser938dissectsignalingactivationinfls2mediatedarabidopsisimmunity AT foxbriang mutationsinfls2ser938dissectsignalingactivationinfls2mediatedarabidopsisimmunity AT bentandrewf mutationsinfls2ser938dissectsignalingactivationinfls2mediatedarabidopsisimmunity |