Cargando…

Illusory Motion and Mislocalization of Temporally Offset Target in Apparent Motion Display

When a visual target briefly appears in a display containing visual motion information, the perceived position of the target is mislocalized forward along its direction of motion. This phenomenon is assumed to be caused by the interaction between the transient onset signal of the target and motion i...

Descripción completa

Detalles Bibliográficos
Autores principales: Hidaka, Souta, Nagai, Masayoshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630298/
https://www.ncbi.nlm.nih.gov/pubmed/23626581
http://dx.doi.org/10.3389/fpsyg.2013.00196
Descripción
Sumario:When a visual target briefly appears in a display containing visual motion information, the perceived position of the target is mislocalized forward along its direction of motion. This phenomenon is assumed to be caused by the interaction between the transient onset signal of the target and motion information. However, while transient onset and offset signals are important for the establishment of our perceptual awareness, it has not been examined whether transient offset signals could be also effective for target mislocalization. Here, we demonstrate that shifts in perceived position occurred for a visual target containing a temporally transient offset signal in an apparent motion (AM) display. First, with horizontal AM, we found that illusory motion was perceived when a static target transiently and repeatedly blinked at a fixed position. The perceived direction of the illusory motion was in counter-phase with that of the AM stimuli. Further, we confirmed that illusory motion was frequently perceived when (1) the eccentricity of the target was larger, (2) offset duration was longer, and (3) smoother AM was perceived. Illusory motion was not perceived unless AM stimuli were presented after the offset signal, while illusory motion still occurred when the AM stimuli disappeared before the offset signal. In addition, we found that mislocalization of the target’s perceived position actually occurred in a direction opposite to AM. These findings suggest that a transient offset signal could trigger perceptual mislocalization of static visual stimuli by interacting with motion information in a postdictive manner.