Cargando…
Prefrontal dopamine and behavioral flexibility: shifting from an “inverted-U” toward a family of functions
Studies on prefrontal cortex (PFC) dopamine (DA) function have revealed its essential role in mediating a variety of cognitive and executive functions. A general principle that has emerged (primarily from studies on working memory) is that PFC DA, acting on D(1) receptors, regulates cognition in acc...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630325/ https://www.ncbi.nlm.nih.gov/pubmed/23626521 http://dx.doi.org/10.3389/fnins.2013.00062 |
_version_ | 1782266693629771776 |
---|---|
author | Floresco, Stan B. |
author_facet | Floresco, Stan B. |
author_sort | Floresco, Stan B. |
collection | PubMed |
description | Studies on prefrontal cortex (PFC) dopamine (DA) function have revealed its essential role in mediating a variety of cognitive and executive functions. A general principle that has emerged (primarily from studies on working memory) is that PFC DA, acting on D(1) receptors, regulates cognition in accordance to an “inverted-U” shaped function, so that too little or too much activity has detrimental effects on performance. However, contemporary studies have indicated that the receptor mechanisms through which mesocortical DA regulates different aspects of behavioral flexibility can vary considerably across different DA receptors and cognitive operations. This article will review psychopharmacological and neurochemical data comparing and contrasting the cognitive effects of antagonism and stimulation of different DA receptors in the medial PFC. Thus, set-shifting is dependent on a co-operative interaction between PFC D(1) and D(2) receptors, yet, supranormal stimulation of these receptors does not appear to have detrimental effects on this function. On the other hand, modification of cost/benefit decision biases in situations involving reward uncertainty is regulated in complex and sometimes opposing ways by PFC D(1) vs. D(2) receptors. When viewed collectively, these findings suggest that the “inverted-U” shaped dose-response curve underlying D(1) receptor modulation of working memory is not a one-size-fits-all function. Rather, it appears that mesocortical DA exerts its effects via a family of functions, wherein reduced or excessive DA activity can have a variety of effects across different cognitive domains. |
format | Online Article Text |
id | pubmed-3630325 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-36303252013-04-26 Prefrontal dopamine and behavioral flexibility: shifting from an “inverted-U” toward a family of functions Floresco, Stan B. Front Neurosci Neuroscience Studies on prefrontal cortex (PFC) dopamine (DA) function have revealed its essential role in mediating a variety of cognitive and executive functions. A general principle that has emerged (primarily from studies on working memory) is that PFC DA, acting on D(1) receptors, regulates cognition in accordance to an “inverted-U” shaped function, so that too little or too much activity has detrimental effects on performance. However, contemporary studies have indicated that the receptor mechanisms through which mesocortical DA regulates different aspects of behavioral flexibility can vary considerably across different DA receptors and cognitive operations. This article will review psychopharmacological and neurochemical data comparing and contrasting the cognitive effects of antagonism and stimulation of different DA receptors in the medial PFC. Thus, set-shifting is dependent on a co-operative interaction between PFC D(1) and D(2) receptors, yet, supranormal stimulation of these receptors does not appear to have detrimental effects on this function. On the other hand, modification of cost/benefit decision biases in situations involving reward uncertainty is regulated in complex and sometimes opposing ways by PFC D(1) vs. D(2) receptors. When viewed collectively, these findings suggest that the “inverted-U” shaped dose-response curve underlying D(1) receptor modulation of working memory is not a one-size-fits-all function. Rather, it appears that mesocortical DA exerts its effects via a family of functions, wherein reduced or excessive DA activity can have a variety of effects across different cognitive domains. Frontiers Media S.A. 2013-04-19 /pmc/articles/PMC3630325/ /pubmed/23626521 http://dx.doi.org/10.3389/fnins.2013.00062 Text en Copyright © 2013 Floresco. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. |
spellingShingle | Neuroscience Floresco, Stan B. Prefrontal dopamine and behavioral flexibility: shifting from an “inverted-U” toward a family of functions |
title | Prefrontal dopamine and behavioral flexibility: shifting from an “inverted-U” toward a family of functions |
title_full | Prefrontal dopamine and behavioral flexibility: shifting from an “inverted-U” toward a family of functions |
title_fullStr | Prefrontal dopamine and behavioral flexibility: shifting from an “inverted-U” toward a family of functions |
title_full_unstemmed | Prefrontal dopamine and behavioral flexibility: shifting from an “inverted-U” toward a family of functions |
title_short | Prefrontal dopamine and behavioral flexibility: shifting from an “inverted-U” toward a family of functions |
title_sort | prefrontal dopamine and behavioral flexibility: shifting from an “inverted-u” toward a family of functions |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630325/ https://www.ncbi.nlm.nih.gov/pubmed/23626521 http://dx.doi.org/10.3389/fnins.2013.00062 |
work_keys_str_mv | AT florescostanb prefrontaldopamineandbehavioralflexibilityshiftingfromaninvertedutowardafamilyoffunctions |