Cargando…

MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer

Past studies have shown that amplified insulin-like growth factor 1 (IGF1)/IGF1 receptor (IGF1-R) signalling has an important role in colorectal cancer (CRC) development, progression and resistance to treatment. In this report, we demonstrate that downregulation of microRNA-497 (miR-497) as a result...

Descripción completa

Detalles Bibliográficos
Autores principales: Guo, S T, Jiang, C C, Wang, G P, Li, Y P, Wang, C Y, Guo, X Y, Yang, R H, Feng, Y, Wang, F H, Tseng, H-Y, Thorne, R F, Jin, L, Zhang, X D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630484/
https://www.ncbi.nlm.nih.gov/pubmed/22710713
http://dx.doi.org/10.1038/onc.2012.214
Descripción
Sumario:Past studies have shown that amplified insulin-like growth factor 1 (IGF1)/IGF1 receptor (IGF1-R) signalling has an important role in colorectal cancer (CRC) development, progression and resistance to treatment. In this report, we demonstrate that downregulation of microRNA-497 (miR-497) as a result of DNA copy number reduction is involved in upregulation of IGF1-R in CRC cells. MiR-497 and miR-195 of the miR-15/16/195/424/497 family that share the same 3′ untranslated region (3′UTR) binding seed sequence and are predicted to target IGF1-R were concurrently downregulated in the majority of CRC tissues relative to paired adjacent normal mucosa. However, only overexpression of miR-497 led to suppression of the IGF1-R 3′UTR activity and downregulation of the endogenous IGF1-R protein in CRC cells. This was associated with inhibition of cell survival, proliferation and invasion, and increased sensitivity to apoptosis induced by various stimuli including the chemotherapeutic drugs cisplatin and 5-fluorouracil, and the death ligand tumour necrosis factor-related apoptosis-inducing ligand. The biological effect of miR-497 on CRC cells was largely mediated by inhibition of phosphatidylinositol 3-kinase/Akt signalling, as overexpression of an active form of Akt reversed its impact on cell survival and proliferation, recapitulating the effect of overexpression of IGF1-R. Downregulation of miR-497 and miR-195 appeared to associate with copy number loss of a segment of chromosome 17p13.1, where these miRs are located at proximity. Similarly to miR-195, the members of the same miR family, miR-424 that was upregulated, and miR-15a, miR-15b and miR-16 that were unaltered in expression in CRC tissues compared with paired adjacent normal mucosa, did not appear to have a role in regulating the expression of IGF1-R. Taken together, these results identify downregulation of miR-497 as an important mechanism of upregulation of IGF1-R in CRC cells that contributes to malignancy of CRC.