Cargando…

Upconverting Organic Dye Doped Core-Shell Nano-Composites for Dual-Modality NIR Imaging and Photo-Thermal Therapy

Nanotechnology approaches offer the potential for creating new optical imaging agents with unique properties that enable uses such as combined molecular imaging and photo-thermal therapy. Ideal preparations should fluoresce in the near-infrared (NIR) region to ensure maximal tissue penetration depth...

Descripción completa

Detalles Bibliográficos
Autores principales: Shan, Guobin, Weissleder, Ralph, Hilderbrand, Scott A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Ivyspring International Publisher 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3630527/
https://www.ncbi.nlm.nih.gov/pubmed/23606913
http://dx.doi.org/10.7150/thno.5226
Descripción
Sumario:Nanotechnology approaches offer the potential for creating new optical imaging agents with unique properties that enable uses such as combined molecular imaging and photo-thermal therapy. Ideal preparations should fluoresce in the near-infrared (NIR) region to ensure maximal tissue penetration depth along with minimal scattering and light absorption. Due to their unique photophysical properties, upconverting ceramics such as NaYF(4):Er(3+),Yb(3+) nanoparticles have become promising optical materials for biological imaging. In this work, the design and synthesis of NaYF(4):Er(3+),Yb(3+)@SiO(2) core-shell nano-composites, which contain highly absorbing NIR carbocyanine dyes in their outer silica shell, are described. These materials combine optical emission (from the upconverting core nanoparticle) with strong NIR absorption (from the carbocyanine dyes incorporated into the shell) to enable both optical imaging and photo-thermal treatment, respectively. Ultimately, this hybrid composite nanomaterial approach imparts the ability to both visualize, via upconversion imaging, and treat, via photo-thermal heating, using two distinct optical channels. Proof-of-principle in vitro experiments are presented to demonstrate the combined imaging and photo-thermal properties of this new functional nano-composite.