Cargando…
Method for Assessing the Reliability of Molecular Diagnostics Based on Multiplexed SERS-Coded Nanoparticles
Surface-enhanced Raman scattering (SERS) nanoparticles have been engineered to generate unique fingerprint spectra and are potentially useful as bright contrast agents for molecular diagnostics. One promising strategy for biomedical diagnostics and imaging is to functionalize various particle types...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631148/ https://www.ncbi.nlm.nih.gov/pubmed/23620806 http://dx.doi.org/10.1371/journal.pone.0062084 |
_version_ | 1782266753285357568 |
---|---|
author | Leigh, Steven Y. Som, Madhura Liu, Jonathan T. C. |
author_facet | Leigh, Steven Y. Som, Madhura Liu, Jonathan T. C. |
author_sort | Leigh, Steven Y. |
collection | PubMed |
description | Surface-enhanced Raman scattering (SERS) nanoparticles have been engineered to generate unique fingerprint spectra and are potentially useful as bright contrast agents for molecular diagnostics. One promising strategy for biomedical diagnostics and imaging is to functionalize various particle types (“flavors”), each emitting a unique spectral signature, to target a large multiplexed panel of molecular biomarkers. While SERS particles emit narrow spectral features that allow them to be easily separable under ideal conditions, the presence of competing noise sources and background signals such as detector noise, laser background, and autofluorescence confounds the reliability of demultiplexing algorithms. Results obtained during time-constrained in vivo imaging experiments may not be reproducible or accurate. Therefore, our goal is to provide experimentalists with a metric that may be monitored to enforce a desired bound on accuracy within a user-defined confidence level. We have defined a spectral reliability index (SRI), based on the output of a direct classical least-squares (DCLS) demultiplexing routine, which provides a measure of the reliability of the computed nanoparticle concentrations and ratios. We present simulations and experiments to demonstrate the feasibility of this strategy, which can potentially be utilized for a range of instruments and biomedical applications involving multiplexed SERS nanoparticles. |
format | Online Article Text |
id | pubmed-3631148 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36311482013-04-25 Method for Assessing the Reliability of Molecular Diagnostics Based on Multiplexed SERS-Coded Nanoparticles Leigh, Steven Y. Som, Madhura Liu, Jonathan T. C. PLoS One Research Article Surface-enhanced Raman scattering (SERS) nanoparticles have been engineered to generate unique fingerprint spectra and are potentially useful as bright contrast agents for molecular diagnostics. One promising strategy for biomedical diagnostics and imaging is to functionalize various particle types (“flavors”), each emitting a unique spectral signature, to target a large multiplexed panel of molecular biomarkers. While SERS particles emit narrow spectral features that allow them to be easily separable under ideal conditions, the presence of competing noise sources and background signals such as detector noise, laser background, and autofluorescence confounds the reliability of demultiplexing algorithms. Results obtained during time-constrained in vivo imaging experiments may not be reproducible or accurate. Therefore, our goal is to provide experimentalists with a metric that may be monitored to enforce a desired bound on accuracy within a user-defined confidence level. We have defined a spectral reliability index (SRI), based on the output of a direct classical least-squares (DCLS) demultiplexing routine, which provides a measure of the reliability of the computed nanoparticle concentrations and ratios. We present simulations and experiments to demonstrate the feasibility of this strategy, which can potentially be utilized for a range of instruments and biomedical applications involving multiplexed SERS nanoparticles. Public Library of Science 2013-04-19 /pmc/articles/PMC3631148/ /pubmed/23620806 http://dx.doi.org/10.1371/journal.pone.0062084 Text en © 2013 Leigh et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Leigh, Steven Y. Som, Madhura Liu, Jonathan T. C. Method for Assessing the Reliability of Molecular Diagnostics Based on Multiplexed SERS-Coded Nanoparticles |
title | Method for Assessing the Reliability of Molecular Diagnostics Based on Multiplexed SERS-Coded Nanoparticles |
title_full | Method for Assessing the Reliability of Molecular Diagnostics Based on Multiplexed SERS-Coded Nanoparticles |
title_fullStr | Method for Assessing the Reliability of Molecular Diagnostics Based on Multiplexed SERS-Coded Nanoparticles |
title_full_unstemmed | Method for Assessing the Reliability of Molecular Diagnostics Based on Multiplexed SERS-Coded Nanoparticles |
title_short | Method for Assessing the Reliability of Molecular Diagnostics Based on Multiplexed SERS-Coded Nanoparticles |
title_sort | method for assessing the reliability of molecular diagnostics based on multiplexed sers-coded nanoparticles |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631148/ https://www.ncbi.nlm.nih.gov/pubmed/23620806 http://dx.doi.org/10.1371/journal.pone.0062084 |
work_keys_str_mv | AT leighsteveny methodforassessingthereliabilityofmoleculardiagnosticsbasedonmultiplexedserscodednanoparticles AT sommadhura methodforassessingthereliabilityofmoleculardiagnosticsbasedonmultiplexedserscodednanoparticles AT liujonathantc methodforassessingthereliabilityofmoleculardiagnosticsbasedonmultiplexedserscodednanoparticles |