Cargando…
Propagation of Human Prostate Cancer Stem-Like Cells Occurs through EGFR-Mediated ERK Activation
Prostate cancer stem-like cells (PCSCs) are being intensely investigated largely owing to their contributions towards prostate tumorigenesis, however, our understanding of PCSC biology, including their critical pathways, remains incompletely understood. While epidermal growth factor (EGF) is widely...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631151/ https://www.ncbi.nlm.nih.gov/pubmed/23620784 http://dx.doi.org/10.1371/journal.pone.0061716 |
_version_ | 1782266753965883392 |
---|---|
author | Rybak, Adrian P. Ingram, Alistair J. Tang, Damu |
author_facet | Rybak, Adrian P. Ingram, Alistair J. Tang, Damu |
author_sort | Rybak, Adrian P. |
collection | PubMed |
description | Prostate cancer stem-like cells (PCSCs) are being intensely investigated largely owing to their contributions towards prostate tumorigenesis, however, our understanding of PCSC biology, including their critical pathways, remains incompletely understood. While epidermal growth factor (EGF) is widely used in maintaining PCSC cells in vitro, the importance of EGF-dependent signaling and its downstream pathways in PCSC self-renewal are not well characterized. By investigating DU145 sphere cells, a population of prostate cancer cells with stem-like properties, we report here that epidermal growth factor receptor (EGFR) signaling plays a critical role in the propagation of DU145 PCSCs. Activation of EGFR signaling via addition of EGF and ectopic expression of a constitutively-active EGFR mutant (EGFRvIII) increased sphere formation. Conversely, inhibition of EGFR signaling by using EGFR inhibitors (AG1478 and PD168393) and knockdown of EGFR significantly inhibited PCSC self-renewal. Consistent with the MEK-ERK pathway being a major target of EGFR signaling, activation of the MEK-ERK pathway contributed to EGFR-facilitated PCSC propagation. Modulation of EGFR signaling affected extracellular signal-related kinase (ERK) activation. Inhibition of ERK activation through multiple approaches, including treatment with the MEK inhibitor U0126, ectopic expression of dominant-negative MEK1(K97M), and knockdown of either ERK1 or ERK2 resulted in a robust reduction in PCSC propagation. Collectively, the present study provides evidence that EGFR signaling promotes PCSC self-renewal, in part, by activating the MEK-ERK pathway. |
format | Online Article Text |
id | pubmed-3631151 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36311512013-04-25 Propagation of Human Prostate Cancer Stem-Like Cells Occurs through EGFR-Mediated ERK Activation Rybak, Adrian P. Ingram, Alistair J. Tang, Damu PLoS One Research Article Prostate cancer stem-like cells (PCSCs) are being intensely investigated largely owing to their contributions towards prostate tumorigenesis, however, our understanding of PCSC biology, including their critical pathways, remains incompletely understood. While epidermal growth factor (EGF) is widely used in maintaining PCSC cells in vitro, the importance of EGF-dependent signaling and its downstream pathways in PCSC self-renewal are not well characterized. By investigating DU145 sphere cells, a population of prostate cancer cells with stem-like properties, we report here that epidermal growth factor receptor (EGFR) signaling plays a critical role in the propagation of DU145 PCSCs. Activation of EGFR signaling via addition of EGF and ectopic expression of a constitutively-active EGFR mutant (EGFRvIII) increased sphere formation. Conversely, inhibition of EGFR signaling by using EGFR inhibitors (AG1478 and PD168393) and knockdown of EGFR significantly inhibited PCSC self-renewal. Consistent with the MEK-ERK pathway being a major target of EGFR signaling, activation of the MEK-ERK pathway contributed to EGFR-facilitated PCSC propagation. Modulation of EGFR signaling affected extracellular signal-related kinase (ERK) activation. Inhibition of ERK activation through multiple approaches, including treatment with the MEK inhibitor U0126, ectopic expression of dominant-negative MEK1(K97M), and knockdown of either ERK1 or ERK2 resulted in a robust reduction in PCSC propagation. Collectively, the present study provides evidence that EGFR signaling promotes PCSC self-renewal, in part, by activating the MEK-ERK pathway. Public Library of Science 2013-04-19 /pmc/articles/PMC3631151/ /pubmed/23620784 http://dx.doi.org/10.1371/journal.pone.0061716 Text en © 2013 Rybak et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Rybak, Adrian P. Ingram, Alistair J. Tang, Damu Propagation of Human Prostate Cancer Stem-Like Cells Occurs through EGFR-Mediated ERK Activation |
title | Propagation of Human Prostate Cancer Stem-Like Cells Occurs through EGFR-Mediated ERK Activation |
title_full | Propagation of Human Prostate Cancer Stem-Like Cells Occurs through EGFR-Mediated ERK Activation |
title_fullStr | Propagation of Human Prostate Cancer Stem-Like Cells Occurs through EGFR-Mediated ERK Activation |
title_full_unstemmed | Propagation of Human Prostate Cancer Stem-Like Cells Occurs through EGFR-Mediated ERK Activation |
title_short | Propagation of Human Prostate Cancer Stem-Like Cells Occurs through EGFR-Mediated ERK Activation |
title_sort | propagation of human prostate cancer stem-like cells occurs through egfr-mediated erk activation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631151/ https://www.ncbi.nlm.nih.gov/pubmed/23620784 http://dx.doi.org/10.1371/journal.pone.0061716 |
work_keys_str_mv | AT rybakadrianp propagationofhumanprostatecancerstemlikecellsoccursthroughegfrmediatederkactivation AT ingramalistairj propagationofhumanprostatecancerstemlikecellsoccursthroughegfrmediatederkactivation AT tangdamu propagationofhumanprostatecancerstemlikecellsoccursthroughegfrmediatederkactivation |