Cargando…

TnaA, an SP-RING Protein, Interacts with Osa, a Subunit of the Chromatin Remodeling Complex BRAHMA and with the SUMOylation Pathway in Drosophila melanogaster

Tonalli A (TnaA) is a Drosophila melanogaster protein with an XSPRING domain. The XSPRING domain harbors an SP-RING zinc-finger, which is characteristic of proteins with SUMO E3 ligase activity. TnaA is required for homeotic gene expression and is presumably involved in the SUMOylation pathway. Here...

Descripción completa

Detalles Bibliográficos
Autores principales: Monribot-Villanueva, Juan, Juárez-Uribe, R. Alejandro, Palomera-Sánchez, Zoraya, Gutiérrez-Aguiar, Lucía, Zurita, Mario, Kennison, James A., Vázquez, Martha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631182/
https://www.ncbi.nlm.nih.gov/pubmed/23620817
http://dx.doi.org/10.1371/journal.pone.0062251
Descripción
Sumario:Tonalli A (TnaA) is a Drosophila melanogaster protein with an XSPRING domain. The XSPRING domain harbors an SP-RING zinc-finger, which is characteristic of proteins with SUMO E3 ligase activity. TnaA is required for homeotic gene expression and is presumably involved in the SUMOylation pathway. Here we analyzed some aspects of the TnaA location in embryo and larval stages and its genetic and biochemical interaction with SUMOylation pathway proteins. We describe that there are at least two TnaA proteins (TnaA(130) and TnaA(123)) differentially expressed throughout development. We show that TnaA is chromatin-associated at discrete sites on polytene salivary gland chromosomes of third instar larvae and that tna mutant individuals do not survive to adulthood, with most dying as third instar larvae or pupae. The tna mutants that ultimately die as third instar larvae have an extended life span of at least 4 to 15 days as other SUMOylation pathway mutants. We show that TnaA physically interacts with the SUMO E2 conjugating enzyme Ubc9, and with the BRM complex subunit Osa. Furthermore, we show that tna and osa interact genetically with SUMOylation pathway components and individuals carrying mutations for these genes show a phenotype that can be the consequence of misexpression of developmental-related genes.