Cargando…
Pharmacointeraction Network Models Predict Unknown Drug-Drug Interactions
Drug-drug interactions (DDIs) can lead to serious and potentially lethal adverse events. In recent years, several drugs have been withdrawn from the market due to interaction-related adverse events (AEs). Current methods for detecting DDIs rely on the accumulation of sufficient clinical evidence in...
Autores principales: | Cami, Aurel, Manzi, Shannon, Arnold, Alana, Reis, Ben Y. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631217/ https://www.ncbi.nlm.nih.gov/pubmed/23620757 http://dx.doi.org/10.1371/journal.pone.0061468 |
Ejemplares similares
-
Concordance and predictive value of two adverse drug event data sets
por: Cami, Aurel, et al.
Publicado: (2014) -
Feasibility of Prioritizing Drug–Drug-Event Associations Found in Electronic Health Records
por: Banda, Juan M., et al.
Publicado: (2015) -
Predicting drug targets by homology modelling of Pseudomonas aeruginosa proteins of unknown function
por: Babic, Nikolina, et al.
Publicado: (2021) -
The Drug Data to Knowledge Pipeline: Large-Scale Claims Data Classification for Pharmacologic Insight
por: Homer, Mark L., et al.
Publicado: (2016) -
Faster drugs for unknown bugs
por: Flemming, Alexandra
Publicado: (2005)