Cargando…
Involvement of decreased hypoxia-inducible factor 1 activity and resultant G(1)–S cell cycle transition in radioresistance of perinecrotic tumor cells
Cancer patients often suffer from local tumor recurrence after radiation therapy. Some intracellular and extracellular factors, such as activity of hypoxia-inducible factor 1 (HIF-1), cell cycle status and oxygen availability, have been suggested to affect DNA damage responses and eventual radioresi...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631307/ https://www.ncbi.nlm.nih.gov/pubmed/22710721 http://dx.doi.org/10.1038/onc.2012.223 |
_version_ | 1782266779014266880 |
---|---|
author | Zhu, Y Zhao, T Itasaka, S Zeng, L Yeom, C J Hirota, K Suzuki, K Morinibu, A Shinomiya, K Ou, G Yoshimura, M Hiraoka, M Harada, H |
author_facet | Zhu, Y Zhao, T Itasaka, S Zeng, L Yeom, C J Hirota, K Suzuki, K Morinibu, A Shinomiya, K Ou, G Yoshimura, M Hiraoka, M Harada, H |
author_sort | Zhu, Y |
collection | PubMed |
description | Cancer patients often suffer from local tumor recurrence after radiation therapy. Some intracellular and extracellular factors, such as activity of hypoxia-inducible factor 1 (HIF-1), cell cycle status and oxygen availability, have been suggested to affect DNA damage responses and eventual radioresistant characteristics of cancer cells. But when, where, and how these factors affect one another and induce cellular radioresistance is largely unknown. Here, we analyzed mechanistic and spatio-temporal relationships among them in highly heterogeneous tumor microenvironments. Experiments in vitro demonstrated that a decrease in the glucose concentration reduced the transcriptional activity of HIF-1 and expression of a downstream gene for the cell cycle regulator p27(Kip1) even under hypoxic conditions. Then, the proportion of cells in the radioresistant S phase increased, whereas that in the radiosensitive G(1) phase decreased, significantly. Immunohistochemical analyses showed that cancer cells in perinecrotic hypoxic regions, which should be under low-glucose conditions, expressed little HIF-1α, and therefore, were mainly in S phase and less damaged by radiation treatment. Continuous administration of glucagon, which increases the blood glucose concentration and so improves glucose availability in perinecrotic hypoxic regions, induced HIF-1α expression and increased radiation-induced DNA damage. Taken all together, these results indicate that cancer cells in perinecrotic regions, which would be under low-glucose and hypoxic conditions, obtain radioresistance by decreasing the level of both HIF-1 activity and p27(Kip1) expression, and adjusting their cell cycle to the radioresistant S phase. |
format | Online Article Text |
id | pubmed-3631307 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-36313072013-04-22 Involvement of decreased hypoxia-inducible factor 1 activity and resultant G(1)–S cell cycle transition in radioresistance of perinecrotic tumor cells Zhu, Y Zhao, T Itasaka, S Zeng, L Yeom, C J Hirota, K Suzuki, K Morinibu, A Shinomiya, K Ou, G Yoshimura, M Hiraoka, M Harada, H Oncogene Original Article Cancer patients often suffer from local tumor recurrence after radiation therapy. Some intracellular and extracellular factors, such as activity of hypoxia-inducible factor 1 (HIF-1), cell cycle status and oxygen availability, have been suggested to affect DNA damage responses and eventual radioresistant characteristics of cancer cells. But when, where, and how these factors affect one another and induce cellular radioresistance is largely unknown. Here, we analyzed mechanistic and spatio-temporal relationships among them in highly heterogeneous tumor microenvironments. Experiments in vitro demonstrated that a decrease in the glucose concentration reduced the transcriptional activity of HIF-1 and expression of a downstream gene for the cell cycle regulator p27(Kip1) even under hypoxic conditions. Then, the proportion of cells in the radioresistant S phase increased, whereas that in the radiosensitive G(1) phase decreased, significantly. Immunohistochemical analyses showed that cancer cells in perinecrotic hypoxic regions, which should be under low-glucose conditions, expressed little HIF-1α, and therefore, were mainly in S phase and less damaged by radiation treatment. Continuous administration of glucagon, which increases the blood glucose concentration and so improves glucose availability in perinecrotic hypoxic regions, induced HIF-1α expression and increased radiation-induced DNA damage. Taken all together, these results indicate that cancer cells in perinecrotic regions, which would be under low-glucose and hypoxic conditions, obtain radioresistance by decreasing the level of both HIF-1 activity and p27(Kip1) expression, and adjusting their cell cycle to the radioresistant S phase. Nature Publishing Group 2013-04-18 2012-06-18 /pmc/articles/PMC3631307/ /pubmed/22710721 http://dx.doi.org/10.1038/onc.2012.223 Text en Copyright © 2013 Macmillan Publishers Limited http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Original Article Zhu, Y Zhao, T Itasaka, S Zeng, L Yeom, C J Hirota, K Suzuki, K Morinibu, A Shinomiya, K Ou, G Yoshimura, M Hiraoka, M Harada, H Involvement of decreased hypoxia-inducible factor 1 activity and resultant G(1)–S cell cycle transition in radioresistance of perinecrotic tumor cells |
title | Involvement of decreased hypoxia-inducible factor 1 activity and resultant G(1)–S cell cycle transition in radioresistance of perinecrotic tumor cells |
title_full | Involvement of decreased hypoxia-inducible factor 1 activity and resultant G(1)–S cell cycle transition in radioresistance of perinecrotic tumor cells |
title_fullStr | Involvement of decreased hypoxia-inducible factor 1 activity and resultant G(1)–S cell cycle transition in radioresistance of perinecrotic tumor cells |
title_full_unstemmed | Involvement of decreased hypoxia-inducible factor 1 activity and resultant G(1)–S cell cycle transition in radioresistance of perinecrotic tumor cells |
title_short | Involvement of decreased hypoxia-inducible factor 1 activity and resultant G(1)–S cell cycle transition in radioresistance of perinecrotic tumor cells |
title_sort | involvement of decreased hypoxia-inducible factor 1 activity and resultant g(1)–s cell cycle transition in radioresistance of perinecrotic tumor cells |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631307/ https://www.ncbi.nlm.nih.gov/pubmed/22710721 http://dx.doi.org/10.1038/onc.2012.223 |
work_keys_str_mv | AT zhuy involvementofdecreasedhypoxiainduciblefactor1activityandresultantg1scellcycletransitioninradioresistanceofperinecrotictumorcells AT zhaot involvementofdecreasedhypoxiainduciblefactor1activityandresultantg1scellcycletransitioninradioresistanceofperinecrotictumorcells AT itasakas involvementofdecreasedhypoxiainduciblefactor1activityandresultantg1scellcycletransitioninradioresistanceofperinecrotictumorcells AT zengl involvementofdecreasedhypoxiainduciblefactor1activityandresultantg1scellcycletransitioninradioresistanceofperinecrotictumorcells AT yeomcj involvementofdecreasedhypoxiainduciblefactor1activityandresultantg1scellcycletransitioninradioresistanceofperinecrotictumorcells AT hirotak involvementofdecreasedhypoxiainduciblefactor1activityandresultantg1scellcycletransitioninradioresistanceofperinecrotictumorcells AT suzukik involvementofdecreasedhypoxiainduciblefactor1activityandresultantg1scellcycletransitioninradioresistanceofperinecrotictumorcells AT morinibua involvementofdecreasedhypoxiainduciblefactor1activityandresultantg1scellcycletransitioninradioresistanceofperinecrotictumorcells AT shinomiyak involvementofdecreasedhypoxiainduciblefactor1activityandresultantg1scellcycletransitioninradioresistanceofperinecrotictumorcells AT oug involvementofdecreasedhypoxiainduciblefactor1activityandresultantg1scellcycletransitioninradioresistanceofperinecrotictumorcells AT yoshimuram involvementofdecreasedhypoxiainduciblefactor1activityandresultantg1scellcycletransitioninradioresistanceofperinecrotictumorcells AT hiraokam involvementofdecreasedhypoxiainduciblefactor1activityandresultantg1scellcycletransitioninradioresistanceofperinecrotictumorcells AT haradah involvementofdecreasedhypoxiainduciblefactor1activityandresultantg1scellcycletransitioninradioresistanceofperinecrotictumorcells |