Cargando…

Plasticity in above- and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species

Functional trait plasticity is a major component of plant adjustment to environmental stresses. Here, we explore how multiple local environmental gradients in resources required by plants (light, water, and nutrients) and soil disturbance together influence the direction and amplitude of intraspecif...

Descripción completa

Detalles Bibliográficos
Autores principales: Freschet, Grégoire T, Bellingham, Peter J, Lyver, Philip O'B, Bonner, Karen I, Wardle, David A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631414/
https://www.ncbi.nlm.nih.gov/pubmed/23610644
http://dx.doi.org/10.1002/ece3.520
_version_ 1782266786609102848
author Freschet, Grégoire T
Bellingham, Peter J
Lyver, Philip O'B
Bonner, Karen I
Wardle, David A
author_facet Freschet, Grégoire T
Bellingham, Peter J
Lyver, Philip O'B
Bonner, Karen I
Wardle, David A
author_sort Freschet, Grégoire T
collection PubMed
description Functional trait plasticity is a major component of plant adjustment to environmental stresses. Here, we explore how multiple local environmental gradients in resources required by plants (light, water, and nutrients) and soil disturbance together influence the direction and amplitude of intraspecific changes in leaf and fine root traits that facilitate capture of these resources. We measured population-level analogous above- and belowground traits related to resource acquisition, i.e. “specific leaf area”–“specific root length” (SLA–SRL), and leaf and root N, P, and dry matter content (DMC), on three dominant understory tree species with contrasting carbon and nutrient economics across 15 plots in a temperate forest influenced by burrowing seabirds. We observed similar responses of the three species to the same single environmental influences, but partially species-specific responses to combinations of influences. The strength of intraspecific above- and belowground trait responses appeared unrelated to species resource acquisition strategy. Finally, most analogous leaf and root traits (SLA vs. SRL, and leaf versus root P and DMC) were controlled by contrasting environmental influences. The decoupled responses of above- and belowground traits to these multiple environmental factors together with partially species-specific adjustments suggest complex responses of plant communities to environmental changes, and potentially contrasting feedbacks of plant traits with ecosystem properties. We demonstrate that despite the growing evidence for broadly consistent resource-acquisition strategies at the whole plant level among species, plants also show partially decoupled, finely tuned strategies between above- and belowground parts at the intraspecific level in response to their environment. This decoupling within species suggests a need for many species-centred ecological theories on how plants respond to their environments (e.g. competitive/stress-tolerant/ruderal and response-effect trait frameworks) to be adapted to account for distinct plant-environment interactions among distinct individuals of the same species and parts of the same individual.
format Online
Article
Text
id pubmed-3631414
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Blackwell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-36314142013-04-22 Plasticity in above- and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species Freschet, Grégoire T Bellingham, Peter J Lyver, Philip O'B Bonner, Karen I Wardle, David A Ecol Evol Original Research Functional trait plasticity is a major component of plant adjustment to environmental stresses. Here, we explore how multiple local environmental gradients in resources required by plants (light, water, and nutrients) and soil disturbance together influence the direction and amplitude of intraspecific changes in leaf and fine root traits that facilitate capture of these resources. We measured population-level analogous above- and belowground traits related to resource acquisition, i.e. “specific leaf area”–“specific root length” (SLA–SRL), and leaf and root N, P, and dry matter content (DMC), on three dominant understory tree species with contrasting carbon and nutrient economics across 15 plots in a temperate forest influenced by burrowing seabirds. We observed similar responses of the three species to the same single environmental influences, but partially species-specific responses to combinations of influences. The strength of intraspecific above- and belowground trait responses appeared unrelated to species resource acquisition strategy. Finally, most analogous leaf and root traits (SLA vs. SRL, and leaf versus root P and DMC) were controlled by contrasting environmental influences. The decoupled responses of above- and belowground traits to these multiple environmental factors together with partially species-specific adjustments suggest complex responses of plant communities to environmental changes, and potentially contrasting feedbacks of plant traits with ecosystem properties. We demonstrate that despite the growing evidence for broadly consistent resource-acquisition strategies at the whole plant level among species, plants also show partially decoupled, finely tuned strategies between above- and belowground parts at the intraspecific level in response to their environment. This decoupling within species suggests a need for many species-centred ecological theories on how plants respond to their environments (e.g. competitive/stress-tolerant/ruderal and response-effect trait frameworks) to be adapted to account for distinct plant-environment interactions among distinct individuals of the same species and parts of the same individual. Blackwell Publishing Ltd 2013-04 2013-03-07 /pmc/articles/PMC3631414/ /pubmed/23610644 http://dx.doi.org/10.1002/ece3.520 Text en © 2013 Published by Blackwell Publishing Ltd. http://creativecommons.org/licenses/by/2.5/ Re-use of this article is permitted in accordance with the Creative Commons Deed, Attribution 2.5, which does not permit commercial exploitation.
spellingShingle Original Research
Freschet, Grégoire T
Bellingham, Peter J
Lyver, Philip O'B
Bonner, Karen I
Wardle, David A
Plasticity in above- and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species
title Plasticity in above- and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species
title_full Plasticity in above- and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species
title_fullStr Plasticity in above- and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species
title_full_unstemmed Plasticity in above- and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species
title_short Plasticity in above- and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species
title_sort plasticity in above- and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3631414/
https://www.ncbi.nlm.nih.gov/pubmed/23610644
http://dx.doi.org/10.1002/ece3.520
work_keys_str_mv AT freschetgregoiret plasticityinaboveandbelowgroundresourceacquisitiontraitsinresponsetosingleandmultipleenvironmentalfactorsinthreetreespecies
AT bellinghampeterj plasticityinaboveandbelowgroundresourceacquisitiontraitsinresponsetosingleandmultipleenvironmentalfactorsinthreetreespecies
AT lyverphilipob plasticityinaboveandbelowgroundresourceacquisitiontraitsinresponsetosingleandmultipleenvironmentalfactorsinthreetreespecies
AT bonnerkareni plasticityinaboveandbelowgroundresourceacquisitiontraitsinresponsetosingleandmultipleenvironmentalfactorsinthreetreespecies
AT wardledavida plasticityinaboveandbelowgroundresourceacquisitiontraitsinresponsetosingleandmultipleenvironmentalfactorsinthreetreespecies