Cargando…
Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods
Gene set analysis (GSA) is used to elucidate genome-wide data, in particular transcriptome data. A multitude of methods have been proposed for this step of the analysis, and many of them have been compared and evaluated. Unfortunately, there is no consolidated opinion regarding what methods should b...
Autores principales: | Väremo, Leif, Nielsen, Jens, Nookaew, Intawat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3632109/ https://www.ncbi.nlm.nih.gov/pubmed/23444143 http://dx.doi.org/10.1093/nar/gkt111 |
Ejemplares similares
-
Novel insights into obesity and diabetes through genome-scale metabolic modeling
por: Väremo, Leif, et al.
Publicado: (2013) -
BioMet Toolbox 2.0: genome-wide analysis of metabolism and omics data
por: Garcia-Albornoz, Manuel, et al.
Publicado: (2014) -
A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae
por: Nookaew, Intawat, et al.
Publicado: (2012) -
Kiwi: a tool for integration and visualization of network topology and gene-set analysis
por: Väremo, Leif, et al.
Publicado: (2014) -
Causal Inference Engine: a platform for directional gene set enrichment analysis and inference of active transcriptional regulators
por: Farahmand, Saman, et al.
Publicado: (2019)