Cargando…
Sequence-specific electron injection into DNA from an intermolecular electron donor
Electron transfer in DNA has been intensively studied to elucidate its biological roles and for applications in bottom-up DNA nanotechnology. Recently, mechanisms of electron transfer to DNA have been investigated; however, most of the systems designed are intramolecular. Here, we synthesized pyrene...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3632121/ https://www.ncbi.nlm.nih.gov/pubmed/23439569 http://dx.doi.org/10.1093/nar/gkt123 |
Sumario: | Electron transfer in DNA has been intensively studied to elucidate its biological roles and for applications in bottom-up DNA nanotechnology. Recently, mechanisms of electron transfer to DNA have been investigated; however, most of the systems designed are intramolecular. Here, we synthesized pyrene-conjugated pyrrole-imidazole polyamides (PPIs) to achieve sequence-specific electron injection into DNA in an intermolecular fashion. Electron injection from PPIs into DNA was detected using 5-bromouracil as an electron acceptor. Twelve different 5-bromouracil-containing oligomers were synthesized to examine the electron-injection ability of PPI. Product analysis demonstrated that the electron transfer from PPIs was localized in a range of 8 bp from the binding site of the PPIs. These results demonstrate that PPIs can be a useful tool for sequence-specific electron injection. |
---|