Cargando…

A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium

Salmonella Typhi and Typhimurium diverged only ∼50 000 years ago, yet have very different host ranges and pathogenicity. Despite the availability of multiple whole-genome sequences, the genetic differences that have driven these changes in phenotype are only beginning to be understood. In this study...

Descripción completa

Detalles Bibliográficos
Autores principales: Barquist, Lars, Langridge, Gemma C., Turner, Daniel J., Phan, Minh-Duy, Turner, A. Keith, Bateman, Alex, Parkhill, Julian, Wain, John, Gardner, Paul P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3632133/
https://www.ncbi.nlm.nih.gov/pubmed/23470992
http://dx.doi.org/10.1093/nar/gkt148
_version_ 1782266845097623552
author Barquist, Lars
Langridge, Gemma C.
Turner, Daniel J.
Phan, Minh-Duy
Turner, A. Keith
Bateman, Alex
Parkhill, Julian
Wain, John
Gardner, Paul P.
author_facet Barquist, Lars
Langridge, Gemma C.
Turner, Daniel J.
Phan, Minh-Duy
Turner, A. Keith
Bateman, Alex
Parkhill, Julian
Wain, John
Gardner, Paul P.
author_sort Barquist, Lars
collection PubMed
description Salmonella Typhi and Typhimurium diverged only ∼50 000 years ago, yet have very different host ranges and pathogenicity. Despite the availability of multiple whole-genome sequences, the genetic differences that have driven these changes in phenotype are only beginning to be understood. In this study, we use transposon-directed insertion-site sequencing to probe differences in gene requirements for competitive growth in rich media between these two closely related serovars. We identify a conserved core of 281 genes that are required for growth in both serovars, 228 of which are essential in Escherichia coli. We are able to identify active prophage elements through the requirement for their repressors. We also find distinct differences in requirements for genes involved in cell surface structure biogenesis and iron utilization. Finally, we demonstrate that transposon-directed insertion-site sequencing is not only applicable to the protein-coding content of the cell but also has sufficient resolution to generate hypotheses regarding the functions of non-coding RNAs (ncRNAs) as well. We are able to assign probable functions to a number of cis-regulatory ncRNA elements, as well as to infer likely differences in trans-acting ncRNA regulatory networks.
format Online
Article
Text
id pubmed-3632133
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-36321332013-04-22 A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium Barquist, Lars Langridge, Gemma C. Turner, Daniel J. Phan, Minh-Duy Turner, A. Keith Bateman, Alex Parkhill, Julian Wain, John Gardner, Paul P. Nucleic Acids Res Genomics Salmonella Typhi and Typhimurium diverged only ∼50 000 years ago, yet have very different host ranges and pathogenicity. Despite the availability of multiple whole-genome sequences, the genetic differences that have driven these changes in phenotype are only beginning to be understood. In this study, we use transposon-directed insertion-site sequencing to probe differences in gene requirements for competitive growth in rich media between these two closely related serovars. We identify a conserved core of 281 genes that are required for growth in both serovars, 228 of which are essential in Escherichia coli. We are able to identify active prophage elements through the requirement for their repressors. We also find distinct differences in requirements for genes involved in cell surface structure biogenesis and iron utilization. Finally, we demonstrate that transposon-directed insertion-site sequencing is not only applicable to the protein-coding content of the cell but also has sufficient resolution to generate hypotheses regarding the functions of non-coding RNAs (ncRNAs) as well. We are able to assign probable functions to a number of cis-regulatory ncRNA elements, as well as to infer likely differences in trans-acting ncRNA regulatory networks. Oxford University Press 2013-04 2013-03-06 /pmc/articles/PMC3632133/ /pubmed/23470992 http://dx.doi.org/10.1093/nar/gkt148 Text en © The Author(s) 2013. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/3.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Genomics
Barquist, Lars
Langridge, Gemma C.
Turner, Daniel J.
Phan, Minh-Duy
Turner, A. Keith
Bateman, Alex
Parkhill, Julian
Wain, John
Gardner, Paul P.
A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium
title A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium
title_full A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium
title_fullStr A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium
title_full_unstemmed A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium
title_short A comparison of dense transposon insertion libraries in the Salmonella serovars Typhi and Typhimurium
title_sort comparison of dense transposon insertion libraries in the salmonella serovars typhi and typhimurium
topic Genomics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3632133/
https://www.ncbi.nlm.nih.gov/pubmed/23470992
http://dx.doi.org/10.1093/nar/gkt148
work_keys_str_mv AT barquistlars acomparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT langridgegemmac acomparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT turnerdanielj acomparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT phanminhduy acomparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT turnerakeith acomparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT batemanalex acomparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT parkhilljulian acomparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT wainjohn acomparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT gardnerpaulp acomparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT barquistlars comparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT langridgegemmac comparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT turnerdanielj comparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT phanminhduy comparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT turnerakeith comparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT batemanalex comparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT parkhilljulian comparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT wainjohn comparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium
AT gardnerpaulp comparisonofdensetransposoninsertionlibrariesinthesalmonellaserovarstyphiandtyphimurium