Cargando…
A Novel Biclustering Algorithm for the Discovery of Meaningful Biological Correlations between microRNAs and their Target Genes
BACKGROUND: microRNAs (miRNAs) are a class of small non-coding RNAs which have been recognized as ubiquitous post-transcriptional regulators. The analysis of interactions between different miRNAs and their target genes is necessary for the understanding of miRNAs' role in the control of cell li...
Autores principales: | Pio, Gianvito, Ceci, Michelangelo, D'Elia, Domenica, Loglisci, Corrado, Malerba, Donato |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633049/ https://www.ncbi.nlm.nih.gov/pubmed/23815553 http://dx.doi.org/10.1186/1471-2105-14-S7-S8 |
Ejemplares similares
-
Integrating microRNA target predictions for the discovery of gene regulatory networks: a semi-supervised ensemble learning approach
por: Pio, Gianvito, et al.
Publicado: (2014) -
ComiRNet: a web-based system for the analysis of miRNA-gene regulatory networks
por: Pio, Gianvito, et al.
Publicado: (2015) -
Prediction of new associations between ncRNAs and diseases exploiting multi-type hierarchical clustering
por: Barracchia, Emanuele Pio, et al.
Publicado: (2020) -
Computational annotation of UTR cis-regulatory modules through Frequent Pattern Mining
por: Turi, Antonio, et al.
Publicado: (2009) -
Differential co-expression framework to quantify goodness of biclusters and compare biclustering algorithms
por: Chia, Burton Kuan Hui, et al.
Publicado: (2010)