Cargando…
Differential Virulence Gene Expression of Group A Streptococcus Serotype M3 in Response to Co-Culture with Moraxella catarrhalis
Streptococcus pyogenes (group A Streptococcus, GAS) and Moraxella catarrhalis are important colonizers and (opportunistic) pathogens of the human respiratory tract. However, current knowledge regarding colonization and pathogenic potential of these two pathogens is based on work involving single bac...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633897/ https://www.ncbi.nlm.nih.gov/pubmed/23626831 http://dx.doi.org/10.1371/journal.pone.0062549 |
_version_ | 1782267014464667648 |
---|---|
author | Verhaegh, Suzanne J. C. Flores, Anthony R. van Belkum, Alex Musser, James M. Hays, John P. |
author_facet | Verhaegh, Suzanne J. C. Flores, Anthony R. van Belkum, Alex Musser, James M. Hays, John P. |
author_sort | Verhaegh, Suzanne J. C. |
collection | PubMed |
description | Streptococcus pyogenes (group A Streptococcus, GAS) and Moraxella catarrhalis are important colonizers and (opportunistic) pathogens of the human respiratory tract. However, current knowledge regarding colonization and pathogenic potential of these two pathogens is based on work involving single bacterial species, even though the interplay between respiratory bacterial species is increasingly important in niche occupation and the development of disease. Therefore, to further define and understand polymicrobial species interactions, we investigated whether gene expression (and hence virulence potential) of GAS would be affected upon co-culture with M. catarrhalis. For co-culture experiments, GAS and M. catarrhalis were cultured in Todd-Hewitt broth supplemented with 0.2% yeast extract (THY) at 37°C with 5% CO(2) aeration. Each strain was grown in triplicate so that triplicate experiments could be performed. Bacterial RNA was isolated, cDNA synthesized, and microarray transcriptome expression analysis performed. We observed significantly increased (≥4-fold) expression for genes playing a role in GAS virulence such as hyaluronan synthase (hasA), streptococcal mitogenic exotoxin Z (smeZ) and IgG endopeptidase (ideS). In contrast, significantly decreased (≥4-fold) expression was observed in genes involved in energy metabolism and in 12 conserved GAS two-component regulatory systems. This study provides the first evidence that M. catarrhalis increases GAS virulence gene expression during co-culture, and again shows the importance of polymicrobial infections in directing bacterial virulence. |
format | Online Article Text |
id | pubmed-3633897 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36338972013-04-26 Differential Virulence Gene Expression of Group A Streptococcus Serotype M3 in Response to Co-Culture with Moraxella catarrhalis Verhaegh, Suzanne J. C. Flores, Anthony R. van Belkum, Alex Musser, James M. Hays, John P. PLoS One Research Article Streptococcus pyogenes (group A Streptococcus, GAS) and Moraxella catarrhalis are important colonizers and (opportunistic) pathogens of the human respiratory tract. However, current knowledge regarding colonization and pathogenic potential of these two pathogens is based on work involving single bacterial species, even though the interplay between respiratory bacterial species is increasingly important in niche occupation and the development of disease. Therefore, to further define and understand polymicrobial species interactions, we investigated whether gene expression (and hence virulence potential) of GAS would be affected upon co-culture with M. catarrhalis. For co-culture experiments, GAS and M. catarrhalis were cultured in Todd-Hewitt broth supplemented with 0.2% yeast extract (THY) at 37°C with 5% CO(2) aeration. Each strain was grown in triplicate so that triplicate experiments could be performed. Bacterial RNA was isolated, cDNA synthesized, and microarray transcriptome expression analysis performed. We observed significantly increased (≥4-fold) expression for genes playing a role in GAS virulence such as hyaluronan synthase (hasA), streptococcal mitogenic exotoxin Z (smeZ) and IgG endopeptidase (ideS). In contrast, significantly decreased (≥4-fold) expression was observed in genes involved in energy metabolism and in 12 conserved GAS two-component regulatory systems. This study provides the first evidence that M. catarrhalis increases GAS virulence gene expression during co-culture, and again shows the importance of polymicrobial infections in directing bacterial virulence. Public Library of Science 2013-04-23 /pmc/articles/PMC3633897/ /pubmed/23626831 http://dx.doi.org/10.1371/journal.pone.0062549 Text en © 2013 Verhaegh et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Verhaegh, Suzanne J. C. Flores, Anthony R. van Belkum, Alex Musser, James M. Hays, John P. Differential Virulence Gene Expression of Group A Streptococcus Serotype M3 in Response to Co-Culture with Moraxella catarrhalis |
title | Differential Virulence Gene Expression of Group A Streptococcus Serotype M3 in Response to Co-Culture with Moraxella catarrhalis
|
title_full | Differential Virulence Gene Expression of Group A Streptococcus Serotype M3 in Response to Co-Culture with Moraxella catarrhalis
|
title_fullStr | Differential Virulence Gene Expression of Group A Streptococcus Serotype M3 in Response to Co-Culture with Moraxella catarrhalis
|
title_full_unstemmed | Differential Virulence Gene Expression of Group A Streptococcus Serotype M3 in Response to Co-Culture with Moraxella catarrhalis
|
title_short | Differential Virulence Gene Expression of Group A Streptococcus Serotype M3 in Response to Co-Culture with Moraxella catarrhalis
|
title_sort | differential virulence gene expression of group a streptococcus serotype m3 in response to co-culture with moraxella catarrhalis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633897/ https://www.ncbi.nlm.nih.gov/pubmed/23626831 http://dx.doi.org/10.1371/journal.pone.0062549 |
work_keys_str_mv | AT verhaeghsuzannejc differentialvirulencegeneexpressionofgroupastreptococcusserotypem3inresponsetococulturewithmoraxellacatarrhalis AT floresanthonyr differentialvirulencegeneexpressionofgroupastreptococcusserotypem3inresponsetococulturewithmoraxellacatarrhalis AT vanbelkumalex differentialvirulencegeneexpressionofgroupastreptococcusserotypem3inresponsetococulturewithmoraxellacatarrhalis AT musserjamesm differentialvirulencegeneexpressionofgroupastreptococcusserotypem3inresponsetococulturewithmoraxellacatarrhalis AT haysjohnp differentialvirulencegeneexpressionofgroupastreptococcusserotypem3inresponsetococulturewithmoraxellacatarrhalis |