Cargando…
Suppressing Multi-Channel Ultra-Low-Field MRI Measurement Noise Using Data Consistency and Image Sparsity
Ultra-low-field (ULF) MRI (B (0) = 10–100 µT) typically suffers from a low signal-to-noise ratio (SNR). While SNR can be improved by pre-polarization and signal detection using highly sensitive superconducting quantum interference device (SQUID) sensors, we propose to use the inter-dependency of the...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633989/ https://www.ncbi.nlm.nih.gov/pubmed/23626710 http://dx.doi.org/10.1371/journal.pone.0061652 |
_version_ | 1782267033183846400 |
---|---|
author | Lin, Fa-Hsuan Vesanen, Panu T. Hsu, Yi-Cheng Nieminen, Jaakko O. Zevenhoven, Koos C. J. Dabek, Juhani Parkkonen, Lauri T. Simola, Juha Ahonen, Antti I. Ilmoniemi, Risto J. |
author_facet | Lin, Fa-Hsuan Vesanen, Panu T. Hsu, Yi-Cheng Nieminen, Jaakko O. Zevenhoven, Koos C. J. Dabek, Juhani Parkkonen, Lauri T. Simola, Juha Ahonen, Antti I. Ilmoniemi, Risto J. |
author_sort | Lin, Fa-Hsuan |
collection | PubMed |
description | Ultra-low-field (ULF) MRI (B (0) = 10–100 µT) typically suffers from a low signal-to-noise ratio (SNR). While SNR can be improved by pre-polarization and signal detection using highly sensitive superconducting quantum interference device (SQUID) sensors, we propose to use the inter-dependency of the k-space data from highly parallel detection with up to tens of sensors readily available in the ULF MRI in order to suppress the noise. Furthermore, the prior information that an image can be sparsely represented can be integrated with this data consistency constraint to further improve the SNR. Simulations and experimental data using 47 SQUID sensors demonstrate the effectiveness of this data consistency constraint and sparsity prior in ULF-MRI reconstruction. |
format | Online Article Text |
id | pubmed-3633989 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36339892013-04-26 Suppressing Multi-Channel Ultra-Low-Field MRI Measurement Noise Using Data Consistency and Image Sparsity Lin, Fa-Hsuan Vesanen, Panu T. Hsu, Yi-Cheng Nieminen, Jaakko O. Zevenhoven, Koos C. J. Dabek, Juhani Parkkonen, Lauri T. Simola, Juha Ahonen, Antti I. Ilmoniemi, Risto J. PLoS One Research Article Ultra-low-field (ULF) MRI (B (0) = 10–100 µT) typically suffers from a low signal-to-noise ratio (SNR). While SNR can be improved by pre-polarization and signal detection using highly sensitive superconducting quantum interference device (SQUID) sensors, we propose to use the inter-dependency of the k-space data from highly parallel detection with up to tens of sensors readily available in the ULF MRI in order to suppress the noise. Furthermore, the prior information that an image can be sparsely represented can be integrated with this data consistency constraint to further improve the SNR. Simulations and experimental data using 47 SQUID sensors demonstrate the effectiveness of this data consistency constraint and sparsity prior in ULF-MRI reconstruction. Public Library of Science 2013-04-23 /pmc/articles/PMC3633989/ /pubmed/23626710 http://dx.doi.org/10.1371/journal.pone.0061652 Text en © 2013 Lin et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Lin, Fa-Hsuan Vesanen, Panu T. Hsu, Yi-Cheng Nieminen, Jaakko O. Zevenhoven, Koos C. J. Dabek, Juhani Parkkonen, Lauri T. Simola, Juha Ahonen, Antti I. Ilmoniemi, Risto J. Suppressing Multi-Channel Ultra-Low-Field MRI Measurement Noise Using Data Consistency and Image Sparsity |
title | Suppressing Multi-Channel Ultra-Low-Field MRI Measurement Noise Using Data Consistency and Image Sparsity |
title_full | Suppressing Multi-Channel Ultra-Low-Field MRI Measurement Noise Using Data Consistency and Image Sparsity |
title_fullStr | Suppressing Multi-Channel Ultra-Low-Field MRI Measurement Noise Using Data Consistency and Image Sparsity |
title_full_unstemmed | Suppressing Multi-Channel Ultra-Low-Field MRI Measurement Noise Using Data Consistency and Image Sparsity |
title_short | Suppressing Multi-Channel Ultra-Low-Field MRI Measurement Noise Using Data Consistency and Image Sparsity |
title_sort | suppressing multi-channel ultra-low-field mri measurement noise using data consistency and image sparsity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3633989/ https://www.ncbi.nlm.nih.gov/pubmed/23626710 http://dx.doi.org/10.1371/journal.pone.0061652 |
work_keys_str_mv | AT linfahsuan suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT vesanenpanut suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT hsuyicheng suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT nieminenjaakkoo suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT zevenhovenkooscj suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT dabekjuhani suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT parkkonenlaurit suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT simolajuha suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT ahonenanttii suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity AT ilmoniemiristoj suppressingmultichannelultralowfieldmrimeasurementnoiseusingdataconsistencyandimagesparsity |