Cargando…
Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity
INTRODUCTION: Human body acceleration is often used as an indicator of daily physical activity in epidemiological research. Raw acceleration signals contain three basic components: movement, gravity, and noise. Separation of these becomes increasingly difficult during rotational movements. We aimed...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3634007/ https://www.ncbi.nlm.nih.gov/pubmed/23626718 http://dx.doi.org/10.1371/journal.pone.0061691 |
_version_ | 1782267037415899136 |
---|---|
author | van Hees, Vincent T. Gorzelniak, Lukas Dean León, Emmanuel Carlos Eder, Martin Pias, Marcelo Taherian, Salman Ekelund, Ulf Renström, Frida Franks, Paul W. Horsch, Alexander Brage, Søren |
author_facet | van Hees, Vincent T. Gorzelniak, Lukas Dean León, Emmanuel Carlos Eder, Martin Pias, Marcelo Taherian, Salman Ekelund, Ulf Renström, Frida Franks, Paul W. Horsch, Alexander Brage, Søren |
author_sort | van Hees, Vincent T. |
collection | PubMed |
description | INTRODUCTION: Human body acceleration is often used as an indicator of daily physical activity in epidemiological research. Raw acceleration signals contain three basic components: movement, gravity, and noise. Separation of these becomes increasingly difficult during rotational movements. We aimed to evaluate five different methods (metrics) of processing acceleration signals on their ability to remove the gravitational component of acceleration during standardised mechanical movements and the implications for human daily physical activity assessment. METHODS: An industrial robot rotated accelerometers in the vertical plane. Radius, frequency, and angular range of motion were systematically varied. Three metrics (Euclidian norm minus one [ENMO], Euclidian norm of the high-pass filtered signals [HFEN], and HFEN plus Euclidean norm of low-pass filtered signals minus 1 g [HFEN(+)]) were derived for each experimental condition and compared against the reference acceleration (forward kinematics) of the robot arm. We then compared metrics derived from human acceleration signals from the wrist and hip in 97 adults (22–65 yr), and wrist in 63 women (20–35 yr) in whom daily activity-related energy expenditure (PAEE) was available. RESULTS: In the robot experiment, HFEN(+) had lowest error during (vertical plane) rotations at an oscillating frequency higher than the filter cut-off frequency while for lower frequencies ENMO performed better. In the human experiments, metrics HFEN and ENMO on hip were most discrepant (within- and between-individual explained variance of 0.90 and 0.46, respectively). ENMO, HFEN and HFEN(+) explained 34%, 30% and 36% of the variance in daily PAEE, respectively, compared to 26% for a metric which did not attempt to remove the gravitational component (metric EN). CONCLUSION: In conclusion, none of the metrics as evaluated systematically outperformed all other metrics across a wide range of standardised kinematic conditions. However, choice of metric explains different degrees of variance in daily human physical activity. |
format | Online Article Text |
id | pubmed-3634007 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-36340072013-04-26 Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity van Hees, Vincent T. Gorzelniak, Lukas Dean León, Emmanuel Carlos Eder, Martin Pias, Marcelo Taherian, Salman Ekelund, Ulf Renström, Frida Franks, Paul W. Horsch, Alexander Brage, Søren PLoS One Research Article INTRODUCTION: Human body acceleration is often used as an indicator of daily physical activity in epidemiological research. Raw acceleration signals contain three basic components: movement, gravity, and noise. Separation of these becomes increasingly difficult during rotational movements. We aimed to evaluate five different methods (metrics) of processing acceleration signals on their ability to remove the gravitational component of acceleration during standardised mechanical movements and the implications for human daily physical activity assessment. METHODS: An industrial robot rotated accelerometers in the vertical plane. Radius, frequency, and angular range of motion were systematically varied. Three metrics (Euclidian norm minus one [ENMO], Euclidian norm of the high-pass filtered signals [HFEN], and HFEN plus Euclidean norm of low-pass filtered signals minus 1 g [HFEN(+)]) were derived for each experimental condition and compared against the reference acceleration (forward kinematics) of the robot arm. We then compared metrics derived from human acceleration signals from the wrist and hip in 97 adults (22–65 yr), and wrist in 63 women (20–35 yr) in whom daily activity-related energy expenditure (PAEE) was available. RESULTS: In the robot experiment, HFEN(+) had lowest error during (vertical plane) rotations at an oscillating frequency higher than the filter cut-off frequency while for lower frequencies ENMO performed better. In the human experiments, metrics HFEN and ENMO on hip were most discrepant (within- and between-individual explained variance of 0.90 and 0.46, respectively). ENMO, HFEN and HFEN(+) explained 34%, 30% and 36% of the variance in daily PAEE, respectively, compared to 26% for a metric which did not attempt to remove the gravitational component (metric EN). CONCLUSION: In conclusion, none of the metrics as evaluated systematically outperformed all other metrics across a wide range of standardised kinematic conditions. However, choice of metric explains different degrees of variance in daily human physical activity. Public Library of Science 2013-04-23 /pmc/articles/PMC3634007/ /pubmed/23626718 http://dx.doi.org/10.1371/journal.pone.0061691 Text en © 2013 van Hees et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article van Hees, Vincent T. Gorzelniak, Lukas Dean León, Emmanuel Carlos Eder, Martin Pias, Marcelo Taherian, Salman Ekelund, Ulf Renström, Frida Franks, Paul W. Horsch, Alexander Brage, Søren Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity |
title | Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity |
title_full | Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity |
title_fullStr | Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity |
title_full_unstemmed | Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity |
title_short | Separating Movement and Gravity Components in an Acceleration Signal and Implications for the Assessment of Human Daily Physical Activity |
title_sort | separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3634007/ https://www.ncbi.nlm.nih.gov/pubmed/23626718 http://dx.doi.org/10.1371/journal.pone.0061691 |
work_keys_str_mv | AT vanheesvincentt separatingmovementandgravitycomponentsinanaccelerationsignalandimplicationsfortheassessmentofhumandailyphysicalactivity AT gorzelniaklukas separatingmovementandgravitycomponentsinanaccelerationsignalandimplicationsfortheassessmentofhumandailyphysicalactivity AT deanleonemmanuelcarlos separatingmovementandgravitycomponentsinanaccelerationsignalandimplicationsfortheassessmentofhumandailyphysicalactivity AT edermartin separatingmovementandgravitycomponentsinanaccelerationsignalandimplicationsfortheassessmentofhumandailyphysicalactivity AT piasmarcelo separatingmovementandgravitycomponentsinanaccelerationsignalandimplicationsfortheassessmentofhumandailyphysicalactivity AT taheriansalman separatingmovementandgravitycomponentsinanaccelerationsignalandimplicationsfortheassessmentofhumandailyphysicalactivity AT ekelundulf separatingmovementandgravitycomponentsinanaccelerationsignalandimplicationsfortheassessmentofhumandailyphysicalactivity AT renstromfrida separatingmovementandgravitycomponentsinanaccelerationsignalandimplicationsfortheassessmentofhumandailyphysicalactivity AT frankspaulw separatingmovementandgravitycomponentsinanaccelerationsignalandimplicationsfortheassessmentofhumandailyphysicalactivity AT horschalexander separatingmovementandgravitycomponentsinanaccelerationsignalandimplicationsfortheassessmentofhumandailyphysicalactivity AT bragesøren separatingmovementandgravitycomponentsinanaccelerationsignalandimplicationsfortheassessmentofhumandailyphysicalactivity |