Cargando…
Cesium Inhibits Plant Growth through Jasmonate Signaling in Arabidopsis thaliana
It has been suggested that cesium is absorbed from the soil through potassium uptake machineries in plants; however, not much is known about perception mechanism and downstream response. Here, we report that the jasmonate pathway is required in plant response to cesium. Jasmonate biosynthesis mutant...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3634425/ https://www.ncbi.nlm.nih.gov/pubmed/23439557 http://dx.doi.org/10.3390/ijms14034545 |
Sumario: | It has been suggested that cesium is absorbed from the soil through potassium uptake machineries in plants; however, not much is known about perception mechanism and downstream response. Here, we report that the jasmonate pathway is required in plant response to cesium. Jasmonate biosynthesis mutant aos and jasmonate-insensitive mutant coi1-16 show clear resistance to root growth inhibition caused by cesium. However, the potassium and cesium contents in these mutants are comparable to wild-type plants, indicating that jasmonate biosynthesis and signaling are not involved in cesium uptake, but involved in cesium perception. Cesium induces expression of a high-affinity potassium transporter gene HAK5 and reduces potassium content in the plant body, suggesting a competitive nature of potassium and cesium uptake in plants. It has also been found that cesium-induced HAK5 expression is antagonized by exogenous application of methyl-jasmonate. Taken together, it has been indicated that cesium inhibits plant growth via induction of the jasmonate pathway and likely modifies potassium uptake machineries. |
---|