Cargando…

Vascular Endothelial Growth Factor Receptor Family in Ascidians, Halocynthia roretzi (Sea Squirt). Its High Expression in Circulatory System-Containing Tissues

The vascular endothelial growth factor (VEGF)-VEGF Receptor (VEGFR) system is an important pathway for regulation of angiogenesis. However, its evolutionary development, particularly the step from invertebrates to vertebrates, is still largely unknown. Here, we molecularly cloned the VEGFR-like gene...

Descripción completa

Detalles Bibliográficos
Autores principales: Samarghandian, Saeed, Shibuya, Masabumi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3634500/
https://www.ncbi.nlm.nih.gov/pubmed/23455462
http://dx.doi.org/10.3390/ijms14034841
Descripción
Sumario:The vascular endothelial growth factor (VEGF)-VEGF Receptor (VEGFR) system is an important pathway for regulation of angiogenesis. However, its evolutionary development, particularly the step from invertebrates to vertebrates, is still largely unknown. Here, we molecularly cloned the VEGFR-like gene from Halocynthia roretzi, a species belonging to the Tunicata, the chordate subphylum recently considered the sister group of vertebrates. The cDNA encoded a homolog of human VEGFR, including the transmembrane domain, and the tyrosine kinase domain with a kinase-insert region, which was designated S. sq VEGFR (GenBank AB374180). Similar to Tunicates including ascidians in the phylogenetic tree, the Amphioxus, another chordate, is located close to vertebrates. However, S. sq VEGFR has a higher homology than the Amphioxus VEGFR-like molecule (GenBank AB025557) to human VEGFR in the kinase domain-2 region. The S. sq VEGFR mRNA was expressed at highest levels in circulatory system-containing tissues, suggesting that S. sq VEGFR plays an important role in the formation or maintenance of circulatory system in Tunicates, Halocynthia roretzi.