Cargando…
Identification of Salmonella Pathogenicity Island-2 Type III Secretion System Effectors Involved in Intramacrophage Replication of S. enterica Serovar Typhimurium: Implications for Rational Vaccine Design
Salmonella enterica serovars cause severe diseases in humans, such as gastroenteritis and typhoid fever. The development of systemic disease is dependent on a type III secretion system (T3SS) encoded by Salmonella pathogenicity island-2 (SPI-2). Translocation of effector proteins across the Salmonel...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Microbiology
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3634603/ https://www.ncbi.nlm.nih.gov/pubmed/23592259 http://dx.doi.org/10.1128/mBio.00065-13 |
_version_ | 1782267122561318912 |
---|---|
author | Figueira, Rita Watson, Kathryn G. Holden, David W. Helaine, Sophie |
author_facet | Figueira, Rita Watson, Kathryn G. Holden, David W. Helaine, Sophie |
author_sort | Figueira, Rita |
collection | PubMed |
description | Salmonella enterica serovars cause severe diseases in humans, such as gastroenteritis and typhoid fever. The development of systemic disease is dependent on a type III secretion system (T3SS) encoded by Salmonella pathogenicity island-2 (SPI-2). Translocation of effector proteins across the Salmonella-containing vacuole, via the SPI-2 T3SS, enables bacterial replication within host cells, including macrophages. Here, we investigated the contribution of these effectors to intramacrophage replication of Salmonella enterica serovar Typhimurium using Fluorescence Dilution, a dual-fluorescence tool which allows direct measurement of bacterial replication. Of 32 strains, each carrying single mutations in genes encoding effectors, 10 (lacking sifA, sseJ, sopD2, sseG, sseF, srfH, sseL, spvD, cigR, or steD) were attenuated in replication in mouse bone marrow-derived macrophages. The replication profiles of strains combining deletions in effector genes were also investigated: a strain lacking the genes sseG, sopD2, and srfH showed an increased replication defect compared to single-mutation strains and was very similar to SPI-2 T3SS-deficient bacteria with respect to its replication defect. This strain was substantially attenuated in virulence in vivo and yet retained intracellular vacuole integrity and a functional SPI-2 T3SS. Moreover, this strain was capable of SPI-2 T3SS-mediated delivery of a model antigen for major histocompatibility complex (MHC) class I-dependent T-cell activation. This work establishes a basis for the use of a poly-effector mutant strain as an attenuated vaccine carrier for delivery of heterologous antigens directly into the cytoplasm of host cells. |
format | Online Article Text |
id | pubmed-3634603 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | American Society of Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-36346032013-04-25 Identification of Salmonella Pathogenicity Island-2 Type III Secretion System Effectors Involved in Intramacrophage Replication of S. enterica Serovar Typhimurium: Implications for Rational Vaccine Design Figueira, Rita Watson, Kathryn G. Holden, David W. Helaine, Sophie mBio Research Article Salmonella enterica serovars cause severe diseases in humans, such as gastroenteritis and typhoid fever. The development of systemic disease is dependent on a type III secretion system (T3SS) encoded by Salmonella pathogenicity island-2 (SPI-2). Translocation of effector proteins across the Salmonella-containing vacuole, via the SPI-2 T3SS, enables bacterial replication within host cells, including macrophages. Here, we investigated the contribution of these effectors to intramacrophage replication of Salmonella enterica serovar Typhimurium using Fluorescence Dilution, a dual-fluorescence tool which allows direct measurement of bacterial replication. Of 32 strains, each carrying single mutations in genes encoding effectors, 10 (lacking sifA, sseJ, sopD2, sseG, sseF, srfH, sseL, spvD, cigR, or steD) were attenuated in replication in mouse bone marrow-derived macrophages. The replication profiles of strains combining deletions in effector genes were also investigated: a strain lacking the genes sseG, sopD2, and srfH showed an increased replication defect compared to single-mutation strains and was very similar to SPI-2 T3SS-deficient bacteria with respect to its replication defect. This strain was substantially attenuated in virulence in vivo and yet retained intracellular vacuole integrity and a functional SPI-2 T3SS. Moreover, this strain was capable of SPI-2 T3SS-mediated delivery of a model antigen for major histocompatibility complex (MHC) class I-dependent T-cell activation. This work establishes a basis for the use of a poly-effector mutant strain as an attenuated vaccine carrier for delivery of heterologous antigens directly into the cytoplasm of host cells. American Society of Microbiology 2013-04-16 /pmc/articles/PMC3634603/ /pubmed/23592259 http://dx.doi.org/10.1128/mBio.00065-13 Text en Copyright © 2013 Figueira et al. http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license (http://creativecommons.org/licenses/by-nc-sa/3.0/) , which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Figueira, Rita Watson, Kathryn G. Holden, David W. Helaine, Sophie Identification of Salmonella Pathogenicity Island-2 Type III Secretion System Effectors Involved in Intramacrophage Replication of S. enterica Serovar Typhimurium: Implications for Rational Vaccine Design |
title | Identification of Salmonella Pathogenicity Island-2 Type III Secretion System Effectors Involved in Intramacrophage Replication of S. enterica Serovar Typhimurium: Implications for Rational Vaccine Design |
title_full | Identification of Salmonella Pathogenicity Island-2 Type III Secretion System Effectors Involved in Intramacrophage Replication of S. enterica Serovar Typhimurium: Implications for Rational Vaccine Design |
title_fullStr | Identification of Salmonella Pathogenicity Island-2 Type III Secretion System Effectors Involved in Intramacrophage Replication of S. enterica Serovar Typhimurium: Implications for Rational Vaccine Design |
title_full_unstemmed | Identification of Salmonella Pathogenicity Island-2 Type III Secretion System Effectors Involved in Intramacrophage Replication of S. enterica Serovar Typhimurium: Implications for Rational Vaccine Design |
title_short | Identification of Salmonella Pathogenicity Island-2 Type III Secretion System Effectors Involved in Intramacrophage Replication of S. enterica Serovar Typhimurium: Implications for Rational Vaccine Design |
title_sort | identification of salmonella pathogenicity island-2 type iii secretion system effectors involved in intramacrophage replication of s. enterica serovar typhimurium: implications for rational vaccine design |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3634603/ https://www.ncbi.nlm.nih.gov/pubmed/23592259 http://dx.doi.org/10.1128/mBio.00065-13 |
work_keys_str_mv | AT figueirarita identificationofsalmonellapathogenicityisland2typeiiisecretionsystemeffectorsinvolvedinintramacrophagereplicationofsentericaserovartyphimuriumimplicationsforrationalvaccinedesign AT watsonkathryng identificationofsalmonellapathogenicityisland2typeiiisecretionsystemeffectorsinvolvedinintramacrophagereplicationofsentericaserovartyphimuriumimplicationsforrationalvaccinedesign AT holdendavidw identificationofsalmonellapathogenicityisland2typeiiisecretionsystemeffectorsinvolvedinintramacrophagereplicationofsentericaserovartyphimuriumimplicationsforrationalvaccinedesign AT helainesophie identificationofsalmonellapathogenicityisland2typeiiisecretionsystemeffectorsinvolvedinintramacrophagereplicationofsentericaserovartyphimuriumimplicationsforrationalvaccinedesign |