Cargando…

An entirely automated method to score DSS-induced colitis in mice by digital image analysis of pathology slides

The DSS (dextran sulfate sodium) model of colitis is a mouse model of inflammatory bowel disease. Microscopic symptoms include loss of crypt cells from the gut lining and infiltration of inflammatory cells into the colon. An experienced pathologist requires several hours per study to score histologi...

Descripción completa

Detalles Bibliográficos
Autores principales: Kozlowski, Cleopatra, Jeet, Surinder, Beyer, Joseph, Guerrero, Steve, Lesch, Justin, Wang, Xiaoting, DeVoss, Jason, Diehl, Lauri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Limited 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3634668/
https://www.ncbi.nlm.nih.gov/pubmed/23580198
http://dx.doi.org/10.1242/dmm.011759
Descripción
Sumario:The DSS (dextran sulfate sodium) model of colitis is a mouse model of inflammatory bowel disease. Microscopic symptoms include loss of crypt cells from the gut lining and infiltration of inflammatory cells into the colon. An experienced pathologist requires several hours per study to score histological changes in selected regions of the mouse gut. In order to increase the efficiency of scoring, Definiens Developer software was used to devise an entirely automated method to quantify histological changes in the whole H&E slide. When the algorithm was applied to slides from historical drug-discovery studies, automated scores classified 88% of drug candidates in the same way as pathologists’ scores. In addition, another automated image analysis method was developed to quantify colon-infiltrating macrophages, neutrophils, B cells and T cells in immunohistochemical stains of serial sections of the H&E slides. The timing of neutrophil and macrophage infiltration had the highest correlation to pathological changes, whereas T and B cell infiltration occurred later. Thus, automated image analysis enables quantitative comparisons between tissue morphology changes and cell-infiltration dynamics.