Cargando…
Characterizing Functional Connectivity Differences in Aging Adults using Machine Learning on Resting State fMRI Data
The brain at rest consists of spatially distributed but functionally connected regions, called intrinsic connectivity networks (ICNs). Resting state functional magnetic resonance imaging (rs-fMRI) has emerged as a way to characterize brain networks without confounds associated with task fMRI such as...
Autores principales: | Vergun, Svyatoslav, Deshpande, Alok S., Meier, Timothy B., Song, Jie, Tudorascu, Dana L., Nair, Veena A., Singh, Vikas, Biswal, Bharat B., Meyerand, M. Elizabeth, Birn, Rasmus M., Prabhakaran, Vivek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635030/ https://www.ncbi.nlm.nih.gov/pubmed/23630491 http://dx.doi.org/10.3389/fncom.2013.00038 |
Ejemplares similares
-
Age-Related Differences in Test-Retest Reliability in Resting-State Brain Functional Connectivity
por: Song, Jie, et al.
Publicado: (2012) -
Classification and Extraction of Resting State Networks Using Healthy and Epilepsy fMRI Data
por: Vergun, Svyatoslav, et al.
Publicado: (2016) -
Parallel ICA identifies sub-components of resting state networks that covary with behavioral indices
por: Meier, Timothy B., et al.
Publicado: (2012) -
Age-Related Changes in Inter-Network Connectivity by Component Analysis
por: La, Christian, et al.
Publicado: (2015) -
Age-Related Changes in BOLD Activation Pattern in Phonemic Fluency Paradigm: An Investigation of Activation, Functional Connectivity and Psychophysiological Interactions
por: La, Christian, et al.
Publicado: (2016)